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Preface

Ta1s book is written for chemistry students who wish to understand
how group theory is applied to chemical problems. Usually the major
obstacle a chemist finds with the subject of this book is the mathe-
matics which is involved; consequently, I have tried to spell out all
the relevant mathematics in some detail in appendices to each chapter.
The book can then be read either as an introduction, dealing with
general concepts (ignoring the appendices), or as a fairly comprehensive
deacription of the subject (including the appendices). The reader is
recommended to use the book first without the appendices and then,
having grasped the broad outlines, read it a second time with the
appendices.

The subject material is suitable for a senior undergraduate course
or for a first-year graduate course and could be covered in 15 lectures
(without the appendices) or in 21 lectures (with the appendices).

The best adviee about reading a book of this nature was probably
that given by George Chrystal in the preface to his book Algebra:
Every mathematical book that is worth reading must be read ‘‘backwards
and forwards”, if I may use the expression. I would modify Lagrange’s
advice a little and say, ‘‘Go on, but often return to strengthen your faith’’.

When you come on a hard or dreary passage, pass it over, and come back
to it after you have seen its importance or found the need for it further on.

Finally, a word of encouragement to those who are frightened by
mathematics. The mathematica involved in actually applying, as
opposed to deriving, group theoretical formulae is quite trivial. It
involves little more than adding and multiplying. It is in fact possible
to make the applications, by filling in the necessary formulae in a
routine way, without even understanding where the formulae have
come from. I do not, however, advocate this practice.

London D. M. B.
November 1972
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1. Symmetry

1-1. Introduction

IN everyday language we use the word symmeiry in one of two ways
and correspondingly the Oxford English Dictionary gives the following
two definitions:

(1) Mutual relation of the parts of something in respect of magnitude
and position; relative measurement and arrangement of parts;
proportion.

(2) Due or just proportion; harmony of parts with each other and
the whole; fitting, regular, or balanced arrangement and relation
of parts or elements; the condition or quality of being well
proportioned or well balanced.

The first definition of the word has a more scientifie ring to it than
the second, the second being related to some extent to the rather more
nebulous concept of beauty, for example John Bulwer wrote in 1650:
‘True and native beauty consists in the just composure and symetrie
of the parta of the body’.+ It is nonetheless interesting that when we
go deeper into the scientific meaning of symmetry we find that the
underlying mathematics involved has itself a beauty and elegance
which could well be described by the second definition.

In this chapter we will first look at symmetry as it occurs in everyday
life and then consider its specific role in chemistry. We will end the
chapter by giving a historical sketch of the development of the mathe-
matics which is used in making use of symmetry in chemistry.

1-2. Symmetry and sveryday life

The ubiquitous role of symmetry in everyday life has been neatly
summarized by James Newman in the following way:

Symmetry establishes a ridiculous and wonderful cousinship between
objects, phenomena, and theories outwardly unrelated: terrestial magnetism,
women’s veils, polarized light, natural selection, the theory of groups,
invariants and transformations, the work habits of bees in the hive, the
structure of space, vase designs, quantum physics, scarabs, flower petals,

t This quotation comes from a book with the extraordinary title, Anthropometamor-
phosis: Man Tranaform’d; or the Artificial Changeling, Historically presenied, in the mad
and cruel Gallantry, foolish Bravery, ridiculous Beauly, filthy finenesse, and loathsome
Loveliness of most Nations, fashioning and altering their Bodies from the Mould intended
by Nature. With a Vindication of the Regular Beautly and Honesty of Nature. And an
Appendix of the Pedigree of the English Gallant.
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F1a. 1-2.2. (a) Ivy leaf; (b) iris. Dotted linea show planes of symmetry perpendicular
to the page.

X.-ray interference patterns, cell division in sea urchins, equilibrium positions
in crystals, Romanesque cathedrals, snowflakes, music, the theory of
relativity .t

In nature we find countless examples of symmetry and in Fig. 1-2.1
we show some rather beautiful examples from the animal, vegetable,
and mineral kingdoms. Externally, most animsls have bilateral
symmetry that is to say they contain a single plane of symmetry; such
a plane bisects every straight line joining a pair of corresponding points.
This is the same thing as saying that the plane divides the object into
two parts which are mirror images of each other. In Fig. 1-2.2 it is
seen that the ivy leaf and iris have, perpendicular to the plane of the
page, one and three planes of symmetry respectively. Actually, the
most frequent number of planes of symmetry in flowers is five. Anyone
interested in the predominance of bilateral symmetry in the animal
world, with its corollary of left and right handedness, is recommended
to read The ambidextrous universe.} In the iris we also notice that
there is & three-fold axis of symmetry, that is, if we rotate the flower
by 2x/3 radians about the axis perpendicular to the page and running
down the centre of the flower, then we cannot tell that it has been
moved. Similarly, the ice crystal in Fig. 1-2.1 has a six-fold axis of
symmetry: a 2/6 rotation leaves it apparently unmoved.

Because of its basic aesthetic appeal (regularity, pleasing pro-
portions, periodicity, harmonious arrangement) symmetry has, since
time immemorial, been used in art. Probably the first example a child
experiences of the beauty of symmetry is in playing with a kaleidoscope.
More erudite examples occur in: poetry, for example the abccba rhyming
sequence in many poems; architecture, for example the octagonal
ceiling in Ely Cathedral (see Fig. 1-2.3); music, perhaps the most astute
use of symmetry in art is a two part piece of music which is sometimes

¥ The world of mathematics, vol. 1, p. 669, Allen and Unwin, London (1980).
+ M. Gardner, The ambidexrtrous universe, Allen Lane, Penguin Prees, London (1967).

Table Music for Two

Moderately fasi—with spirit {(Key of G}

URZIOW 'V "M (03 Jo Ay} wids ynm—jse) L[2ridpopy
om] I0J JIsny 2Qiqe L
Fic. 1-2.4. The soore of ‘Mogzart’s’ Table Music for Two.

attributed to Mozart,} one part being simply the upside down version
of the other; consequently a single copy of the score can be used by
both players (see Fig. 1-2.4); and painting and design, see for example
the specimen of Scottish bookbinding shown in Fig. 1-2.5.

1 In Ké&chel-Einstein's Themati talogue of Mozart’s works this piece is in the

4Anhang of doubtful and spurious pieces (Anh. 284dd) and Einatein statea: ‘These items
are surely not by Mozart’.
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One thing we notice is that all of these examples involve either a
plane, an axis or & centre of symmetry, which in turn define a plane, a
line or a point about which the object is symmetric.

1-3. Symmetry and chemistry

The involvement of symmetry in chemistry has a long history; in
540 ®.0. the Society of Pythagoras held that earth had been produced
from the regular hexahedron or cube, fire from the regular tetrahedron,
air from the regular octahedron, water from the regular icosahedron,
and the heavenly sphere from the regular dodecahedron. Today, the
chemist intuitively uses symmetry every time he recognizes which
atoms in a molecule are equivalent, for example in pyrene it is easy

to see that there are three sets of equivalent hydrogen atoms. The
appreciation of the number of equivalent atoms in a molecule leads to
the possibility of determining the number of substituted molecules
that can exist e.g. there are only three possible monosubstituted
Pyrenes. o

Symmetry also plays an important part in the determination of the
structure of molecules. Here, a great deal of the evidence comes from
the measurement of crystal structures, infra-red spectra, ultra-violet
spectra, dipole moments, and optical activities. All of these are proper-
ties which depend on molecular symmetry. In connection with the
spectroscopic evidenes, it is interesting to note that in the preface to
his famous book on group theory, Wigner writes:

I like to recall his [M. von Laue’s] queation as to which results derived in
the present volume I considered most important. My answer was that the
explanation of Laporte’s rule (the concept of parity) &nd t.he qua.nt'.um
theory of the vector addition model appeared to me most significant. Since
that time, I have come to agree with his answer that the recognition that
almost all rules of spectroscopy follow from the symmetry of the problem
is the most remarkable result.

Of course, the basis for our understanding of molecular structure
(rather than simply its determination) lies in quantum mechanics and

Symmetry 8

therefore any consideration of the role of symmetry in chemistry is
basically & consideration of its role in quantum mechanica. The link
between symmetry and quantum mechanics is provided by that part
of mathematics known as group theory.

1-4. Historical sketch

In spite of the title, most of the mathematics which oceurs in this
book is in fact only a small part of the subject known as group theory.
We will, however, now briefly sketch the history of this theory.

No one person was responsible for the group idea but the figure which
looms largest is that of the man who gave the concept its name:
Evariste Galois (1811-32). Galois had a short if action-packed life, and
he was probably the youngest mathematician ever to make such
significant discoveries. He was born in 1811 at Bourg-la-Reine just
outside Paris, and by the age of sixteen he had read and understood
the works of the great mathematicians of his day. However, despite
his genius for mathematics, he failed twice in the entrance examinations
to the Ecole Polytechnique which was in those days the Mecca for
French mathematicians. Finally, in 1830 he was accepted at the Ecole
Normal, only to be expelled the same year for a newspaper letter
concerning the actions of the school’s director during the J uly Revo-
lution. Galois had always been a convinced republican and had a strong
hatred for all forms of tyranny, so it is not surprising to find that in
1831 he was arrested for proposing a toast which was interpreted as a
threat on the life of King Louis Philippe. He was at first acquitted but
then, shortly afterwards, he was arrested again and sentenced to six
months in jail for illegally wearing a uniform and carrying weapons.
He died on May 31st 1832 when only 20 years old from wounds received
from being shot in the intestines during a duel. The duel was fought,
under a code of honour, over a ‘coquette’ but some historians believe
it was instigated by an agent provocateur on the monarchist side. The
night before the duel, Galois with forebodings of death wrote out for
posterity notes concerning his most important discoveries, which at
that time had not been published. His total work is less than sixty
pages.

The concept of a group had been introduced by Galois in his work on
the theory of equations and this was followed up by Baron Augustin
Louis Cauchy (1788-1857) who went on to originate the theory of
Permutation groups. Other early workers in group theory were: Arthur
Cayley (1821-95) who defined the general abstract group as we now
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know itt and who at the same time developed the theory of matrices;
Camille Marie Ennemond Jordan (1838-1922); Marius Sophus Lie
(1842-99) and Ludwig Sylow (1832-1918).

For the chemist, however, the most important part of group theory
is representation theory. This theory and the idea of group characters
were developed almost single-handedly at the turn of the century by
the German algebraist George Ferdinand Frobenius (1849-1917).
Through a decade nearly every volume of the Berliner Sitzungberichte
contained one or other of his beautiful papers on this subject.

One of the earliest applications of the theory of groups was in the
study of erystal structure and with the later development of X-ray
analysis this application was revised and eiaborated.} This is, however,
purely a matter of geometrical classification and though useful in
cataloguing possible types of crystals, it has no profound physical
significance. Of much more importance is the work of Hermann Weyl
(1885-1955) and Eugene Paul Wigner (1902-) who in the late twenties
of this century developed the relationship between group theory and
quantum mechanics.

It is interesting that Weyl had a deep conviction that the harmony
of nature could be expressed in mathematically beautiful laws and an
outstanding characteristic of his work was his ability to unite previously
unrelated subjects. He created a general theory of matrix repre-
sentation of continuous groups and discovered that many of the
regularities of quantum mechanies could be best understood by means
of group theory.

Wigner's greatest contribution was the application of group theory
to atomic and nuclear problems; in 1963 he shared the Nobel Prize for
physics with J. H. D. Jensen and M. G. Mayer.

Finally attention is drawn to a germinal paper on the application of
group theory to problems concerning the nature of crystals which was
published in 1929 by another Nobel Prize winner, the German physicist
Hans Albrecht Bethe (1906-).

We will conclude this chapter by noting that it is one of the most
extraordinary things in science that something as simple and abstract
as the theory of groups should be so useful in the practical and
everyday problems of the chemist and it is perhaps worth quoting here
the English mathematician and philosopher, A. N. Whitehead (1861-
1947) who said ‘It is no paradox that in our most theoretical moods
we may be nearest to our most practical applicationa’.

¥ A. Cayley, Phil. mag., 4th Serics, 7, 40 {1854).
t Artur Schoenflies, Theorie der Kristallsirukiur, Borntraeger, Berlin (1923).

2. Symmetry operations

2-1. Introduction

T e purpose of this book is to show how the consideration of molecular
symmetry can cut short a lot of the work involved in the quantum
mechanical treatment of molecules. Of course, all the problems we
will be concerned with could be solved by brute force but the use of
symmetry is both more expeditious and more elegant. For example,
when we come to consider Hiickel molecular orbital theory for the
trivinylmethyl radical, we will find that if we take account of the
molecule’s symmetry, we can reduce the problem of solving a 7 x7
determinantal equation to the much easier one of solving one 3 x 3 and
two 2 x 2 determinantal equations and this leads to having one cubic
and two quadratic equations rather than one seventh-order equation to
solve. Symmetry will also allow us immediately to obtain useful
qualitative information about the properties of molecules from which
their structure can be predicted ; for example, we will be able to predict
the differences in the infra-red and Raman spectra of methane and
monodeuteromethane and thereby distinguish between them.

However, to start with we must get a clear idea what it is we mean
by the symmetry of a molecule. In the first place it means consideration
of the arrangement of the atoms {(or, more precisely, the nuclei) in their
equilibrium positions. Now, when we look at different nuclear arrange-
ments, it is obvious that we require a much more precise and scientific
definition of symmetry than any of those given previously in Chapter 1,
for clearly there are many different kinds of symmetry, for example
the symmetry of benzene is patently different from that of methane,
yet both are in some sense symmetric. Only when we have put the
concept of symmetry on a sound basis, will we be able to classify
molecules into various symmetry types {see the next chapter).

The way in which we systematize our notion of symmetry is by
introducing the concept of a symmetry operation, which is an action
which moves the nuclear framework into a position indistinguishable
from the original one. At first sight it would appear that there are
very many such cperations possible. We will see, however, that each
falls into one of five clearly delineated types: identity, rotation,
reflection, rotation-reflection, and inversion.

Related to the symmetry operation will be the symmetry element.
These two terms are not the same and the reader is warned not to
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confuse them. The symmetry operation is an action, the symmetry
element is a geometrical entity (a point, a line or a plane) about which
an action takes place. It is worth stressing here that one of the problems
in the theory of symmetry is the confusion over the meaning of words,
some of which have a general meaning in everyday life but a very
precise one in the theory of this book. Further confusion arises from
the use of symbols which have one meaning in arithmetic and another
in group theory. The reader is advised to think carefully what the
words and symbols in this text really mean and not to jump to
conclusions. With this in mind, we discuss initially in this chapter the
algebra of operators. An operator is the symbol for an operation (the
words operator and operation are often used interchangeably, and
though, semantically, they should not be, no great barm comes from
doing so). On the surface this algebra appears to be the same as the
algebra of numbers but, in fact, it is not so.

At the end of this chapter we will show that knowledge of symmetry
can lead us directly to predict whether a molecule can have a dipole
moment and whether it can exhibit optical activity.

2-2. The algebra of operators

An operator is the symbol for an operation which produces one
function from another. Just as a function f assigns to each x in some
range a number f(x), 8o an operator O assigns to each function f in a
certain class, a new function denoted by Of. (To distinguish operators
from other algebraic symbols we will characterize them by bold face
italic letters.) An operator, therefore, is a rule or a means of getting one
function from another and at the outset it is important to realize their
very great generality; they can, for example, be as simple as multipli-
cation by 2 where in mathematical terms we would write:

O = 2 times
and if O operates on the function f(z) = #* then the new function
would be Of(z) — 2 times f(z) = 2.

Other examples are: the differential operator O = d/dzx; if the original
function is f(z} = z?+=z then O produces the new function

Of () = % (x24x) = 2x2+1;

the squaring operator O = ( )3; if the original function is f(x) = z*t+=
then O produces the new function

Of(z) = (a*+2)t = at 424 +%;
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an operator O which changes the sign of z and y; if the original function
is f(x, y) = exp{ax)sin(by) then O produces the new function

Of(z, y) = exp(—ax)sin(—by);
and the logarithm operator O = In(); if the original function is
f(x) = exp(ax), then the new function will be
Oflx) = In[explax)] = ax.

Clearly, there are countless examples of operators.
One special kind of operator is the lirnear operator. An operator O
will be linear if

O(fi+fy) = Of,+Of, (2-2.1)
where f, and f, are functions of one or more variables, and if
Okf) = kOf (2-2.2)

whenever k is a constant. From the examples given before, it is clear
that d/d# is a linear operator since

af,

df,
i Tay =~ Oh+tOf

df
dx

Oi+1D = o= () =
and

d
OWf) = o (i) = k- = kOf,

whereas O = log( ) is not since

O(f1 +f2) = log(fi+f) # log f,+log f, = Of,+ Of,
Of) = log(kf) # klog f = kOF.

Another special type of operator is the unitary operator, but we will
leave discussion of this type until later (§ 5-7).

The algebra of linear operators consists of a definition of (1) a sum
law, (2) a product law, (3) an associative law, and (4) a distributive law.
(1) The sum law. The sum of two linear operators O, and O, is defined

b ion:
y the equation: (0,4 0,)f = O.f+ O.f (2-2.3)
©8 (d/dx +3)a2 = dz2/dx +3x2.

and

(2) The product law. The product of two linear operators O, and O, is
d .
efined by the equation 0,0.f —0,(0.0), (2-2.4)

that is O, first operates on the function f to produce a new function
and then O, operates on this new function to produce a final function.
It should be noticed that the order of the operators in a product is
important (in this respect their algebra is different from the algebra of
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numbers), and that ©,0; is not necessarily the same operator as 0,0,
e.g. if O, = djdx and O, = x* times, then

d
0,0.) = 3 (@) = 2ef 42 3L

and symbolically we write:

and

0,0, + 0,0, (2-2.5)
and we say that O, and O, do not commute. Incidentally, the reader
must constantly be aware of the fact that when one writes a product
of two operators, 0,0, it does not mean O, multiplied by O, although
on paper it might appear that way. '

(3) The associative law. This can be expressed by the equation:
0,(0,0;) = (0;0,)0, (2-2.6)
which means that combining O, and O, (see eqn {2-2.4)) first and then
this produet with O, is the samc as combining Q, and O, first and
then this product with O, e.g. if O, = z? times, 0, = d/dx and
0; = d?/dx? then:
s : 4
0,(0,0,)f = %H(d*fda?)f — = T,
d\ dzf d3f
(0:0,)0.f = (?” d_ar) Tt
and eqgn (2-2.6) is satisfied. )
(4) The distributive law. This law is given by the equations:
0,(0,+0;) = 0,0,+ 0,0,
and (Oz+03)01 = Ozo1+0301-

and

(2-2.7)

2-3. Symmetry operations

A symmetry operation is an operation which when applied to a
molecule (by which we mean the nuclear framework) moves it in such a
way that its final position is physically indistinguishable from its initial
position. It should be pointed out that such an operation can have no
effect on any physical property of the molecule. Also, in this text, we
will establish the convention that the operation is applied to the
molecule itself and not to some set of spatial axes. The symbol for
such an operation is called a symmetry operator (for which bold-faoe
italic type will be used). For every symmetry operation there is a
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corresponding symmetry element {a point, a line, or a plane) with
respect to which the operation is carried out. There are five different
kinds of symmetry operation.

The identical operation

This is the operation of doing nothing (leaving the molecule un-
changed) and, at first sight, may seem somewhat gratuitous; its
inclusion, however, is necessary for the group theory that comes later.
The corresponding symmetry element is called the identity and it has
the symbol £ (from the German word Einheit meaning unity).

The rotation operation

This is the operation of rotating a molecule clockwise about an axis.
If a rotation by 2n/n brings the nuclear framework into coincidence
with itself, the molecule is said to have as a symmetry element an
n-fold axis of symmetry (other terms are n-fold proper axis and n-fold
rotation axis). Necessarily « is an integer. The symbol for this element
is €, and for the operator C,. If rotation by 27 /n produces coincidence
then clearly so will rotation by % times 2=/n (where % is an integer),
such an axis, which will coincide with C,, is given the symbol O%.
The corresponding operator C¥ can be interpreted in one of two ways:
a rotation by k2x/n or the application of C, & times. It is apparent that
C, = E since a rotation by n2rfn = 2m is equivalent to doing nothing,
and hence n must be an integer. Tt must also be true that for a molecule
containing the symmetry clement C, an anti-clockwise rotation by
k2=[n must also be a symmetry operation and this is denoted by C*,
from which we see that C% == C;'"™™. The axis having the largest n
value is called the principal axis.

In Fig. 2-3.1 we illustrate these definitions for a square-based
Pyramid by labelling the four corners of the base. This labelling is
merely to enable us to see that an operation has taken place and it
has no physical significance : the whole point of the symmetry operation
is that the final orientation is indistinguishable from the original one.
Of the operations shown in Fig. 2-3.1, only three, excluding E, are
distinet: C,, C,, and Ci. It is conventional when choosing the symbol
for a rotational operation to do so in such a way that # is as small as
possible, e.g. C, is used in preference to C;. Finally, it is apparent. that
quite often symmetry elements will coincide and in such cases we will
link the symmetry elements e.g. the C,, C,, and C? axes in Fig. 2-3.1
will be written as C,—C,;—C5.
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The reflection operation

This is the operation of reflection about a plane. If the reflection
brings the nuclear framework into coincidence with itself, the molecule
is said to have a plane of symmetry as a symmetry element. The
symbol given this element is o (after the German word Spiegel, meaning
mirror). If such a plane is perpendicular to the principal axis it is
labelled o, (h = horizontal) and if it contains the prinecipal axis o,
(v = vertical), if the plane contains the principal axis and bisects the
angle between two two-fold axes of symmetry which are perpendicular
to the principal axis, it is labelled o, {d = diagonal or dihedral), this
latter plane is just a special kind of ¢,. We notice that reflecting a
molecule twice in the same plane brings it back to its original position
and we can write g = E. In Fig. 2-3.2 we illustrate these planes for an

octahedron and a symmetrie tripod.

The rotation—reflection operation

This is the operation of clockwise rotation by 2x#/n about an axis
followed by reflection in a plane perpendicular to that axis (or vice
versa, the order is not important). If this brings the molecule into
coincidence with itself, the molecule is said to have a n-fold alternating
axis of symmetry (or improper axis, or rotation-reflection axis) as a
symmetry element. It is the ‘knight’s move’ of symmetry. It is symbol-
ized by S, and illustrated for a tetrahedral molecule in Fig. 2-3.3.1

It is clear that if a molecule has a C, axis and a plane of symmetry
perpendicular to that axis, the C, axis is also a §, axis. It is easily
seen that the application of §, twice is the same as the application of
C, twice (the reflection part of S, is simply annulled); this is written as

S5 = Ci.
In general, & applications of S, will give
S* = 0,C* ifkis 0odd
and Sk =2 if k is even.
Consequently S¥ can only be interpreted as a rotation C} followed by a
reflection in the horizontal plane if &£ is odd; the opposite is also frue

e.g. & rotation by 2.2x/3 plus reflection is written as S; and not as §;
(which would simply be C;). Furthermore, simple arguments lead to

1 In this Figure the tetrahedral struoture is shown by the cube which circumscribes
it and the tetrahedral corners are the alternate corners of the oube. We shall frequently

display tetrahedra in this way.
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if n is even.
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b

————

F1a. 2-3.3. Rotation—reflection.

The inverse operation

This is the operation of inverting all points in a body about some
centre, i.e. if the centre is O, then any point A is moved to A’ on the
line AO such that OA’ = OA or put another way, if a set of Cartesian
axes have their origin at O, a point with coordinates (x, ¥, z) is moved to
(—=z, —y, —z). If this operation brings the nuclear framework into
coincidence with itself, the molecule is said to have a centre of sym-
metry as a symmetry element and this is symbolized by ¢ (no relation
to 4/ —1). In Fig. 2-3.4 we show the inversion operation for an octa-
hedral framework.

Fro. 2-3.4. Tnversion.

It is apparent that S, and i are equivalent (see Fig. 2-3.5) and that
the application of inversion twice is the same as doing nothing, this is
written as i = E.

In Table 2-3.1 we summarize the various definitions and symbols
which have been discussed.

2-4. The algebra of symmetry operations

Symmetry operations like operators can be combined together and
when this is done they produce other symmetry operations, e.g, if P
and Q are symbols for any two symmetry operations then PQ is the
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Fi1a. 2-3.5. The S, operation.

operation of first applying Q and then applying P. Notice the con-
vention that the first operation to be carried out is the one on the
right. Since both operations, P and Q, leave the molecule ceoincident
with itself, so must their product and therefore the combination of two
(or, by extension, more) symmetry operations is itself & symmetry
operation.. Mathematically, we may write

PQ =R (2-4.1)

and say that R is also a symmetry operation. The order of the terms
in a product is important since symmetry operations do not always
commute e.g. for a symmetric tripod (see Fig. 2-4.1)

C,C;t=E and G;'C;=E (2-4.2)

TABLE 2-3.1
Symmelry operations and elements

Symmetry operation (symbol)

Symmeiry element (symbol)

No change (E)

Rotation by 2x/n about an axis of sym-
metry (C,)

Refloction in & plane of symmetry per-
pendicular to the principal axis of aym-
metry (on)

Reflection in a plane of symmetry con-
taining the principal axis of symmetry
{o9)

Reflection in a plane of symmetry con-
taining the principal axis of symmetry
and bisecting the angle between two
2-fold axes of syrnmetry which are per-
pendicular to the principal axis (@4)

Rotation by 2x/n about an axis followed
by reflection in a plane perpendicular
to that axis (S§,)

Inversion in & centre of aymmetry (i)

Identity {(E)
A n-fold axis of rotation (C,)

A plane of symmetry perpendicular to the
principal axis of symmetry (on)

A plane of symmetry containing the
principal axis of symmetry (ov)

A plane of symmetry containing the
principal axis of symmetry and bisect-
ing the angle between two 2-fold axes
of symmetry which are perpendicular
to the principal axia (q)

The n-fold alternating axis {S;)

The centre of symmetry (1)

Symmetry Operations 17

C;!

(b)<

Fi1o. 2.4.1. (8) Commutation between C, and C; L (b) non-commutation between C, and
o,
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and hence C, and C;* commute (C,C;* — C;*C,) but
Cio, = o, and d,C, = o]
and hence C; and o, do not commute (C,a. # o,C;). The planes o,

o7, and o) are defined in Figs. 2-3.2 and 3-4.1.
Symmetry operations clearly obey the associative law:

(PQ)R = P(QR) = PQR. (2-4.3)

If two symmetry operations combine together to give the identical
operation E, e.g. eqn (2-4.2), then they are said to be the inverse of
each other and the inverse of an operation P is written as P—1 (we have,
in fact, already been unknowingly using this notation for rotational
operations, ¢f: G, and C;*), the general situation is written as:

PQ=QP =E (2-4.4)

and we say P is the inverse symmetry operation to Q (P = Q') and
Q is the inverse symmetry operation to P (Q = P-!}. A symmetry
operation always commutes with its inverse.

The inverse of the product of two symmetry operations PQ is

omp (POt = Q-1P-:, (2-4.5)
This is seen to be true by noting that
(PQYQ—*P-1) = P(QQ-1)P-1 = P(E)P-* = PP-1 — E.

In carrying out the above steps we have made use of the fact that E,
the ‘do nothing’ operation, can always be dropped from any combi-
nation.

Although there is no process for dividing one operation by another,
we can always combine one symmetry operation with the inverse of
another symmetry operation and this is essentially equivalent to
division, e.g. though we cannot change PQ = R to PQ/R = 1, we can
combine both sides with the symmetry operation R-? and obtain

PQR*=RR'=E.

The reader should convince himself that the inverses of E, C,, @, S,
and { are respectively, E, C.', o, §;', and i.

Finally, a word of warning; because the order of operations in a
product is important (the one to the right always being carried out
first), one must be careful when manipulating equations involving
symmetry operations, for example, if PQ = R then we can write
TPQ = TR (combining T on the left of botk sides) or PQT = RT
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{combining T on the right of both sides) but we cannot write

PQT = TR or TPQ = RT.

2-b. Dipole moments

One application of symmetry operations that we can make right
away concerns dipole moments. The use of symmetry arguments can
tell us whether a molecule has a dipole moment and in many cases
along which line it lies. Since a symmetry operation leaves a molecule
in a configuration physically indistinguishable from the one before
the operation, the direction of the dipole moment vector must also
remain unchanged after a symmetry operation. Therefore if a molecule
has a n-fold axis of rotation C, the dipole moment must lie along this
axis but if we have two or more non-coincident symmetry axes, the
molecule cannot have a dipole moment because it cannot lie on two
axes at the same time. Methane CH, has four non-coincident C, axes
and therefore has no dipole moment (see Fig. 2-5.1). If there is a plane
of symmetry o, the dipole moment must lie in this plane and if there
are several symmetry planes, the dipole moment must lie along their
intersection. In ammonia NH, the dipole moment lies along the Oy

(64
H

g L . - SaH

Cy

F1q. 2-5.1. C, axes in methane,
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axis which is also the intersection of three symmetry planes (see Fig.
2-4.1). A molecule containing & centre of symmetry ¢+ cannot have a
dipole moment, since inversion reverses the direction of any vector.
Our conclusions about dipole moments are all within the context of
the Born-Oppenheimer approximation and methane, for example, has
in reality a small permanent moment whose magnitude is the order of
10-5 to 10~* D. This moment is caused by centrifugal distortion effects.t

2-8. Optical activity

The origins of the subject of optical activity go back to 1690 when
Huygens discovered that light could be polarized by a doubly-refracting
crystal of Iceland spar (calcite). Detailed descriptions of light polari-
zation are available in many books and for our purposes it is only
necessary to recall that in circular polarization, the electric vector
associated with the light describes a right- or a left-handed helix and
that if & right and a left circularly polarized ray of the same frequency
are superimposed, the resultant electrio field vector is a sine wave
function along a single direction (plane) in space. Such light is said to
be plane polarized.

Many substances can rotate the plane of polarization of a ray of
plane polarized light. These substances are said to be optically active.
The first detailed analysis of this phenomenon was made by Biot, who
found not only the rotation of the plane of polarization by various
materials (rotatory polarization) but also the variation of the rotation
with wavelength (rotatory dispersion). This work was followed up by
Pasteur, Biot’s student, who separated an optically inactive crystalline
méaterial (sodium ammonium tartrate) into two species which were of
different crystalline form and were separately optically active. These
two species rotated the plane of polarized light equally but in opposite
directions and Pasteur recognized that the only difference between
them was that the crystal form of one was the mirror image of the
other. We know to-day, in molecular terms, that the one necessary
and sufficient condition for a substance to exhibit optical activity is
that its molecular structure be such that it cannot be superimposed on
its image obtained by reflection in & mirror. When this condition is
satisfied the molecule exists in two forms, showing equal but opposite
optical properties and the two forms are called enanitomers.

Whether & molecule is or is not superimposable on its mirror image
is a question of symmetry. A molecule which containe & n-fold alter-
nating axis of symmetry (3,) is always superimposable on its mirror

t 1. Ouier, Phys. Rov. Leti., 27, 1320 (1871).
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image. This is true because the operation §, consists of two parts: a
Fotation C, and a reflection e. Since a reflection creates the mirror
image, the operation S, is equivalent to rotating in space the mirror
im_a.ge. By definition, a molecule containing a S, axis is brought into
coincidence with itself by the operation S, and hence its mirror image,
after rotation, is superimposable. The reader is reminded that S, = o
and §, = 4, so that a molecule with either a plane or a centre of sym-
metry is also optically inactive. However, the most general rule is: a
molecule with a S, axis is optically inactive. Conversely, it can be
shown that a molecule without a 8, axis is, in principle, optically active.
Planes and centres of symmetry are easily identified and molecules
having these symmetry elements are readily classified as inactive;
alternating axes of symmetry (with » > 2) can be harder to spot.
The first example of a molecule with a S, axis (n > 2) to be experi-
mentally studied was 3,4,3’,4’-tetramethyl-spiro-(1,1°)-bipyrrolidinium
ion in 1955 (see Fig. 2-6.1). This ion has a 8, axis and was, as expected
found to be inactive. ,

-

8
H., t ,CH, H, ,CH,
CH, H H CH, H
]
X ./ S— N
8 H
rd
CHy : CH
y CH, CH,

CH, H

Fra. 2-6.1. 3,4,3',4'-tetramethyl-spiro-(1,1’)-bipyrrolidinium ion (inactive).
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Fi1e. 2.6.2, (a) Mycomyein, & naturally-occurring optically-active allene; (b) one form
of lactioc acid {optically active),

In principle, the lack of a S, axis dictates the existence of optical
activity and two examples are given in Fig. 2-6.2, however, in practice,
it may not always be possible to actually demonstrate the activity.
There are two reasons for this. One is that the optical activity may be
8o small that it is virtually undetectable; this is the case for the two

CH, CH, CH, CH,

1
|
. " 1
LCFals CH, | CHJCH,,
|
}
1

&
/\

(a) /( ,'\

]
/ CH,),CH, |
[CH,],CH, " CH,[CH, )
1
CH, [CH,}, Mirror (CH,|, CH,

Al I Al
DT | cH G
I .

|

|

1

]

|

1
CD, (Db, \ n, CD,

Mirror

Fra. 2.6.3. (a) Butylethylhexylpropylmethane; (b) a substituted biphenyl molecule.

Symmetry Operations 23

NO,; O,N NO, N
n B Rotate 2 O H
\ e end ¢ e
S, ‘/ carbons ., -
QB o0 G ¢y
P \\C Y b ~b
b [/
(a) NO, O,N (b) NO, O,N
Mirror
NO, O;N These two forms are
b H b identical (to show this
\\ S identity the model must
¢ ' be moved so as to
/ interchange the left and
P o right. rings).
() NO, O;N

Fi1a. 2-8.4. Lack of activity due to free rotation.

forms of butylethylhexylpropylmethane or for the two forms of the
substituted biphenyl in Fig. 2-6.3. The lack of activity in these molecules
can be ascribed to the fact that there are only small differences between
the substituent groups. The second reason is that free rotation can
prevent & distinction being made. For example, the substituted
biphenyl molecule in Fig. 2-6.4 has rotation about the central bond
restricted by the nitro-groups but nevertheless rotation of both end
groups as shown in conformation (a) gives rise to conformation (b)
which is completely superimposable on (c¢) the mirror image of (a). In
other words, though (a} and (c) are not superimposable, {a) can be
converted to (b} = (e¢) simply by free rotation.

The reader is advised that optical activity is alluded to again at the
end of the next chapter in problem 3.7.

PROBLEMS

2.1. Give all the symmetry elements of H,0, NHy and CH,. For each molecule
list the symmetry operations which commute.

2.2, On the basis of symmetry, which of the following molecules cannot have a
dipole moment: CH,, CH,Cl, CH,D,, H,8, 8F,?

2.3. Which of the following molecules cannot be optically active: CHFCIBr,
H,0,, Co(en)3*, cis-Co(en)y(NHy)}¥, trans-Co(en)s (NH,)3+?



3. Point groups

3-1. Introduction

I~ this chapter we start on the long path that takes us from the
symmetry elements which a molecule possesses to the theorems which
will reduce the labour in quantum mechanical calculations. These
theorems form & part of the subject called group theory and the
connecting link between group theory and the symmetry operations of a
molecule is that the latter form what is known as a group. This link
opens up the whole wealth of valuable information which is contained
in group theory. At first sight, group theory appears so abstract and
so unrelated to physical reality that it seems amazing that it should
be the powerful practical tool which it is.

Having defined a group and given some examples, we will consider
the specific type of group which is of interest to us: the point group.
We will then introduce the notation which must be mastered and which
allows us to classify molecules according to the symmetry elements they
possess and we will give a simple scheme for determining the point
group to which a given molecule belongs. Once this classification of
molecules has been made, we will no longer need to consider specific
molecules but only bodies having certain symmetry properties, i.e.
belonging to a particular point group.

3-2. Definition of a group

A group is any set or collection of elements which together with some
well-defined combining operation obey a certain set of rules. The
meaning of the word ‘elements’ is very general. The elements could,
for example, be numbers, matrices, vectors, roots of an equation or
symmetry operations. It is important to remember that the definition
of a group requires specifying a combining operation. This too is quite
general. It could be, depending on the particular group, ordinary
addition, ordinary multiplication, matrix multiplication, vector ad-
dition, or one operation followed by another.

The rules which the elements of a group must obey are as follows.

The ‘product’ or combination of any two elements of the group must
produce an element which is also a member of the group, i.e. if Pand Q
are symbols for two members of the group and PQ = R, then R must
be & member of the group. Notice that PQ does not mean P multiplied
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by @ but rather P combined with @ according to the defined combining
rule.

The group must contain the identity element, which is given the
symbol E, and is such that when combined with any element in the
group R it leaves that element unchanged i.e. RE = ER = R. Notice
that E commutes with all elements of the group.

The associative law must hold for all elements of the group, i.e.
P(QR) = (PQ)R, or, in words, the combining of P with the combina-
tion QR must be the same as the combining of the combination PQ
with R.

Every element R must have an inverse element R~ which must also
be a member of the group. The inverse is defined by the equation:

RR-' = R\R =E.

These four rules are put into eompact form in Table 3-2.1.

TaBrLe 3-2.1
Definition of a group
1. PQ=R R in the group
2. RE=FER =R E in the group
3. P(QR) = (PQ)R For all elementa
4. RR-'=RR=F R~ in the group

3-3. Some sxamplss of groups

The preceding definition of a group seems rather abstract and
exceedingly general and in order to bring things down to earth, we give
in this section some concrete examples.

All positive and negative whole numbers together with zero form a
group whose combining rule is algebraic addition. The first rule of a
group is obeyed because the addition of any two whole numbers
produces another whole number which is, by definition, also an element
of the group. If we add zero to any whole number, the number is
unchanged and so for this group the identity element is zero, and this
too is a member of the group. The associative rule clearly holds and the
inverse of any number is simply the negative of that number and this is
algo an element of the group i.e. a+(—a) = (—a)+a = 0. There are
an infinite number of elements in this group and for this reason it is
called an infinite group.

Another infinite group consists of the vectors r — ai +5j +ck, where
i, ], and k are non-coplanar vectors and a, b, and ¢ are positive or
negative whole numbers or zero. The combining operation is vector
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addition and the identity element is the null vector: ¢ =0, 4 =0,
c = 0.

Another group consists of the elements 1, —1, i and —i (where
i = 4/—1) and the combining operation of algebraic multiplication.
Combination, or multiplication, of any two elements produces one of
the four elements; 1 is the identity element; the associative rule holds;
and the inverse of 1is 1, of —1 is —1, of i is —i, of —i ia i. This is an
example of a finite group.

The roots of the equation 2 — 1 are 1, (i4/3—1)/2, and —(i4/31+-1)/2
and if the combining rule is algebraic multiplication, these three
numbers form a group for which £ = 1. The inverse of 1 is 1 and the
other two elements are inverses of each other.

All powers of two, ...273, 21, 2¢0, 21 23 ., form an infinite group if
the combining rule is algebraic multiplication.

The four matrices

1 0 0 O 01 0 0 0 0 01 o 01 0
01 0 0 1 0 ¢ O o 01 0 o 0 0 1
o 01 ol jo o o 1)fjlo 1 0 of (1 0 O O
0 0 0 1 c 01 06 1 0 0 0 01 0 0

form & finite group if the combining rule is matrix multiplication. In
this example, the first matrix is the identity element E. The multipli-
cation of any two matrices produces one of the four. The algebra of
matrices is discussed in the next chapter.

3-4. Point groups

From our point of view, the most important type of group is the one
which consists of all the symmetry operations (not the symmetry
elements) pertaining to a molecular structure. For such a group the
combining rule is one operation followed by another. Since the appli-
cation of any symmetry operation leaves a molecule physically un-
changed and with the same orientation in space, its centre of mass
must also remain fixed in space under all symmetry operationa. From
this it follows that all the axes and planes of symmetry of a molecule
must intersect at at least one common point. Such groups are called
point groups. (For a crystal of infinite size we can have symmetry
operations, e.g. translations, that leave no point fixed in space; these
give rise to space groups.)

That the symmetry operations of a molecule obey the four rules for a
group is easily verified. The combination of any two symmetry oper-
ations must produce another symmetry operation (see eqn (2-4.1)), the
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identity element is the ‘do nothing’ operation E, the associative law
holds (see eqn (2-4.3)) and corresponding to each symmetry operation
there i8 an inverse operation which annuls its effect and which is also a
symmetry operation and therefore a member of the group.

To illustrate these concepts let us consider the symmetric tripod
framework (this has the same symmetry as NH,). In Fig. 3-4.1 we
show the following six symmetry operations:

(1) do nothing (E),

(2) reflection in the o, plane (a)),

(3) reflection in the o7 plane (o7),

(4) reflection in the ¢} plane (a7),

(6) clockwise rotation by 2#/3 about the C; axis (C,),

(6) clockwise rotation by 4=/3 about the C, axis or anti-clockwise
rotation by 2#/3 (C; = C;Y).

Notice that the symmetry elements with respect to which the operations
are carried out, remain fixed in space; that is, if we introduce a fixed
set of laboratory axes (x,y,z), then the operations can be defined
with respect to these axes e.g. ¢/, is the yz plane, of is the plane con-
taining the z axis and 30° clockwise from the xz plane, ete. It is also
important to understand that the labels (a, b, ¢) on the feet of the
tripod have no physical significance ; they are only a convenient way of
identifying which symmetry operation has been carried out,

In the light of what comes later, we will always consider rotations in
their clockwise sense e.g. we will interpret C;* as a clockwise rotation
of 47(3. Furthermore, in all operations it will be the body which is
moved not the set of laboratory axes. The reader is cautioned that some
text books take the opposite convention and keep the body fixed while
moving the laboratory axes; it all comes down to the same thing in the
long run but intermediate steps will look different, especially with
regard to the signs in the corresponding equations. For this reason,
when consulting another book, always check the convention being used.

The six operations for the symmetric tripod form a particular point
group and the way in which they combine together is conveniently
summarized by what is known as a group fable (Table 3-4.1). In this
table the operation to be first carried cut is given in the first row and
the second operation to be carried out in the first column, the combina-
tion falls in the body of the table at the intersection of the appropriate
row and column, e.g. a,a] = C,, that is the operation o] followed by
the operation o, is identical to the single operation C; (see Fig. 3-4.2).
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TABLE 3-4.1
Group table for a symmetric tripodt
E oy ay o G,

(1)

E E o ay Oy C,

o,

oy oy Gt E C, oy

oy oy G Lom) E o,

C, c, ay o ay Lores

c? G o L oy E c,

9
9
®
o
]
%8888 |9

® ax Essentially a group table shows how the first rule for a group is obeyed.
Inspection of Table 3-4.1 shows that each row or column contains
each element once and once only. This is true for all group tables and
the proof, the Rearrangement Theorem, is given in Appendix A.3-1.
An important concept concerning groups is ssomorphism. Two groups,
% with the elements 4, B, ... and @ with the elements 4’, B, ..., are

3) said to exhibit {somorphism if a one to one correspondence

”*

A A', B> B, ...

can be established between their elements such that
AB =C implies A'B’ =C’
and vice versa, or more briefly if
(ABY = A'B'.

Paraphrasing this definition, we may say that isomorphic groups have
group tables of the same structure or form although they may differ
in respect of the notation and nature of their elements and differ in

Cs

Cx 1EC32
———————eeee .

F10. 34.2. oy = C,.

F1a. 3-4.1. Symmetry operationa for a symmetrio tripod.
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their combining rules. The following two groups of order 4 are iso-
morphic, the combining rule for each being stated in brackets:
“: 1, i, —1, —i (ordinary multiplication)
1 0 o1 -1 0 0 —1
o 1 —1 0 o -1 1 0
(matrix multiplication).
Indeed if the elements of each set are renamed E, 4, B, C (in this order}),
their common group table is seen to be

E 4 B C
E |E A B C
414 B C F
B |B C E A
Cc |C E A B

Likewise, if the elements ¥, 4, B, C, D, F of some group combine
according to Table 3-4.2, which has the same structure as Table 3-4.1,

TABLE 3-4.2
A group table with the same siructure as Table 3-4.1
B ¢ P

-
.S
v

oGk by
SRS R
QY b
Qhybt
bl Q
b h Qb
b Qx

then this group is said to be isomorphic with the group of symmetry
operations for the symmetric tripod.

In isomorphism each element of one group is uniquely mirrored by
an element of the other group, i.e. no two elements have the same
image. The more general situation, called Aomomorphism, still preserves
the structure condition (4 B) == 4’B’ but includes cases in which two
different elements of one group # have the same image in the other
group #'. Thus in homomorphism structure is retained but individuality
may be destroyed. To mention a trivial case, any group ¥ is homq-
morphie with the group %’ whose only element is the number 1; in fact if
A—1, B—1, C—1,... a relation of the form 4B = C is carried
over into 1 x1 = 1, which is evidently true. In § 5-10 we will see that

Point Groups 31

for a group of square matrices there is always a homomorphic corre-
spondence between each matrix and its determinant.

3-5. Soms properties of groups

The number of elements in a group is called the order of the group
and is ususally given the symbol g e.g. for the point group for the
symmetric tripod ¢ is 6 and for an infinite group g is .

It is clear that the elements of point groups do not necessarily
commute, that is the order in which one combines two symmetry
operations can be important (see, for example, Fig. 2-4.1 and Table
3-4.1 where for the symmetrio tripod C,a., % a,C,). A group for which
all the elements do commute is called an Abelian group.

One can, of course, combine more than two elements of a group; one
simply uses the given combining rule more than once, e.g. PQR is
obtained by combining @ with R to obtain some other element of the
group and then combining P with this element.

If P and @ are elements of & group, then so, by the definition of a
group, is the inverse of Q, @, and consequently Q-1 PQ. If thia latter
combination is identical with the element R we can write

R =@PQ (3-5.1)

and we say that R is the transform of P by @ or that P and R are
conjugate to each other. The criterion, therefore, for two elements P
and R to be conjugate to each other is that eqn (3-5.1) holds for at
least one element @ of the group. We can combine Q and Q- on the
left and right hand sides respectively of both sides of eqn (3-5.1) and

produce QRQ! = QQ-'PQQ— — EPE — P. (3-5.2)

Either of eqns (3-5.1) and (3-5.2) acts as a definition of conjugation
between two elements of a group. Furthermore, if P is conjugate to @
and ¢} is conjugate to R, then P is conjugate to R. This is demonstrated
by the following equations:

P = X‘qu,
Q = Y'RY,
therefore P=X1¥YER¥X

= (¥X)y*R(YX), (seeeqn (2-4.5))
and as ¥X must be some element of the group say Z we have

P — Z'RZ, (3-5.3)
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The elements of a group whioh are conjugate to each other are said
to form a class and the number of elements in the ith class is given the
symbol g;. For the symmetric tripod point group the elements fall into
three classes: E; o, o}, a}; C,, C;' with g, = 1,9, =3 and g, = 2.
For this and all groups E is conjugate with itself: X—1EX — E (all X)
and henee E is always in a class of its own; we will always consider E
to be the first claas. The reader, with the aid of Table 3-4.1, can confirm
for himself that if @ = &, or o or o} then with any of the six eloments
of the group X the transform X-1QX is either o, or o] or o] and that
if @ = C, or C;" then with any element of the group X the transform
X-1QX is either C, or C;.

Any element will always be conjugate with itself as E is always in
the group and P = E-1PE.

If P and Q are conjugate, then s0 are their inverses; this follows
using eqn (2-4.5) from

Pt = (XQX) = (QX)y (X!
= QX)X = X@1X. (3-5.4)

Hence the inverses of the elements of a class belong to a class (it is
sometimes the same one) and the order of a class of elements and the
order of the class of their inverses is the same.
In an Abelian group,
X1PX = X1XP = P,

and each element is in a class of its own and the number of classes is the
same as the order of the group g.

The technique that has been given for dividing any group into classes
can be replaced by a simpler one in the case of point groups. This is
valuable since the testing of eqn (3-5.1) for all possible combinations
of Q and P of a given point group can be quite time consuming, e.g.
an equilateral triangle belongs to a point group which has 12 symmetry
operations and therefore for this point group we would have to work
out Q—PQ 144 times. That there should be a simpler way is indicated
by the fact that in the example of the symmetric tripod point group
given above, the classes appear to be a ‘natural’ sub-division of the
point group and to contain operations which are ‘similar’.

The following simple rules can be established for point groups:

(1) The symmetry operations E, #, and g, are each in a class by
themselves.

(2) The rotation operation Cy and its inverse C,* will belong to the
same class (a different class for each value of k) provided there is
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either & plane of symmetry containing the C% axis or a C, axis
at right angles to the C}, axis; if not, C* and C.* are in classes by
themselves. The same is true for the rotation-reflection operations
S¥ and S*.

(3) Two reflection operations & and o’ will belong to the same class
provided there is a symmetry operation in the point group which
moves all the points on the ¢’ symmetry plane into corresponding
positions on the ¢ symmetry plane. A similar rule holds true for
two rotational operations C* and C* (or §* and S¥) about
different rotational axes, i.e. the two operations belong to the
same class provided there is a symmetry operation in the point
group which moves all the points on the C¥ (or S¥) axis to
oorresponding positions on the C* (or %) axis.

The proof of these three rules is based on their relationship with
eqn (3-5.1). The symmetry operations E, 1, and e, commute with all
the other symmetry operationa of the point group of which they are a
part and hence, if P = E, {, or @, and Q is any symmetry operation of
the given point group, Q—*PQ = Q-1QP = P and P is in a class by
itself (Rule (1)).

The proof of Rules (2) and (3) depends on the fact that the symmetry
operation Q—PQ must be of the same general type, rotation or re-
flection, as P (this is easily demonstrated). Now consider the rotations
C, and G;* for a point group which contains a reflection operation o
where the plane of symmetry o contains the C% axis. The symmetry
operation ¢-1Cko, or oC%o since 6= = o, must be a rotation about
the C% axis since points on this axis are unmoved under the three
component operations (g, C;, o) and the only question remaining is
the magnitude of this rotation. In Fig. 3-5.1 it is shown what happens
to the rectangle OABC under the symmetry operation o-1Cle if
C, is a clockwise rotation by 6 degrees and o is the zz plane; it is clear
that OABC is rotated anti-clockwise by 8 degrees. Hence the rotation
0-1C,0 must be C;* and C* and C.* must belong to the same clags. In
Fig. 3-5.2 the operation C;'CiC,(= C,CXC,) is carried out. This
operation raust also be a rotation about C% since points on this axis
end up by being unmoved. What happens to the rectangle OABC
demonstrates that C;'CxC, = C.*. These results, together with their
extension to rotation-reflection operations form the basis of Rule (2).

To prove Rule (3) first consider the reflection operation Q-1¢Q
where Q is a symmetry operation which moves all the points on some
symmetry plane ¢’ to corresponding positions on the symmetry plane
o. Taking the components of Q-1aQ one by one: Q will move the
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g
¢ =xzplane
x P

Fia, 3-56.1. The effect of -'Cio on a rectangle which contains the O axis, under the
conditions of Rule (2).

Apmmmmen B ¢ |

bt
0 ’%‘gﬁ,gmﬁﬂ x
c ¢,

Fi1c. 3-5.2. The effect of C;'CxC, on a rectangie which contains the O} axis, under the
conditions of Rule (2).
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points initially in the ¢’ plane to the ¢ plane, & will leave these points
unchanged and Q-* will move the points back to the ¢’ plane. Hence,
Q6 leaves the points in the ¢’ plane unmoved and must therefore
be a reflection in that plane, i.e. —'6Q = o’ and o and o’ belong to
the same class. Now consider the similar rule for rotations: if ¢ moves
the points on the C}’ axis to corresponding positions on the C* axis,
then C} will leave them unchanged and Q-! will bring them back to
their initial positions on the €} axis, and hence Q-1C*Q is a rotation

Ci 4

s
=

?o z ) z

Fie. 3-5.3. The effect of a-1Cho on & rectangle which contains the Ct’ axis, under the
conditions of Rule (3).

about the O axis; the magnitude of this rotation can be seen by
considering what happens to points in any plane which contains the
CY axis. If Q is a rotation, then Q—1C*Q will be a clockwise rotation
by k2m/n about the CL' axis, that is Q~1C*Q = C* and C* and C¥
belong to the same class. If Q is a reflection, then Q—2C*Q will be an
anti-clockwise rotation by ¥2s/n about the C¥’ axisand Q—1CXQ = C;*
(see Fig. 3-5.3), but since for all the point groups which have this
property, the symmetry operations C,* and C¥ fall into the same
class, C%, C;* and C* will all be in the same class and Rule (3) will
still hold true. A similar proof exists for rotation-reflection operations.

3-6. Classification of point groups
We are now in a position to describe and classify the various point
groups that exist. The notation we will use is known as the Schoenflies
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Tasrm 3-6.1
The point groups and their essential symmetry elements

Point group Easential symmeiry elementst

L One symmetry plane

L7} A oentre of syrametry

€ One n-fold axis of symmetry

@, One U, axis plus n J, axes perpsndicular to it
Cur Ons O, axis plus n vertical planes oy

€ One O, axis plua a horizontal plans op

P Those of P, plus a horizontal plane on

Doy Thoes of @, plus n dihedral planes g

& o (1 6Ven) One n-fold alternating axis of symmetry

Ta Thoes of a regular tetrahsdron

Y Those of & regular octahedron or oube

Fn Those of a regular icosahedron

Ay Thoss of a sphare

1 These el ta are all in addition to the identity element F whish

is posseesed by all point groups.

notation and the symbols for the various point groups will be written
in soript type in order to distinguish them from symmetry elements or
symmetry operations.

Though, strictly speaking, it is the symmetry operations and not the
symmeiry elements that form the group, it is common to describe each
point group by the corresponding elements. We will continue this
practice with the understanding that when we later use point groups
it will be the symmetry operations which we will be dealing with
rather than the symmetry elements.

In Table 3-86.1 we give the essential symmetry elements for the
various point groups. We use the word essential since some of the
symmetry elements listed in this Table for a given point group will
necessarily imply the exigtence of others which are not listed. In
Table 3-6.2 some alternative symbols are shown. An exhaustive list of

TABLE 3-6.2
Alternative symbols

Gmb ==,
=5,

Con = &, (nodd)

Gy =yt

Doy == ¥y

9.4-”'4

By =y

Dag = Sy

+ From the German
word Vierergruppe.
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TAzBLE 3-6.3
The point groups and all their symmetry elemenist

group Symmeiry slements

Es B, on

113 B

€, x

€ =, 0,

s B, 00}

€, R, C0,-0%

€, E, O C1-0t-C;

(‘. E, ol-ol—ol—o‘t—o:

«, E, 0010070107

€ B, 0000y Ce03-C;

D, E, three U, (mutually perpendicular)

2, R, Cy—C3, three C, (perpendicular to C,)

@, E, C~Cy-Ci, four C, (perpendicular to C,)t

B, E, 0, C1-Ci—Ct, five 0, (perpendicular to C)

@, E, OyCy~Cy—C}-04, six G, (perpendioular to 0,)}

€ v same as €,

Eae E, G, two ay

Cor E, C—C%, three oy

€u B, UG_GI-O.I, four o3

L B, 0.—0:—0:'0:. five oy

Cov B, Cy00r-CiCt, six o

€ v E, infinite number of coincidental rotational axes, infinite number of oy

€ same as ¥,

€sn B, C,y %, on

€ K, CrC:—'Srs:-i Tn

“a E, OrCyCe85%, on, §

€ E, 0003048 ,-81-Si-5%.8 on

?un £z, C’.—C'.—O.—C'i—c"rsr-srﬁ”rﬂ:.i On, <

Doy E, three U, (mutually perpendicular), ¥, three ¢ (mutually perpendioular)

Don E, O 03-853.§ three O, (perpendicular to C,), o, three ay

P B, C Oy 058 8%, four 0, (perpendiocular to C,),1 4, on, four o}

By, B, O-01-01-Ci-8,-81-51-8,§ five ', (perpendicular to C,), on, five oy

Ben E, OO0y 1088 S¢54%,§ six Oy (perpendicular to 0(),$ ¥, on, €ix o2

D on I, infinite number of coincidental rotaticnal ¢ and alternating 9 axes, (§; =
On), infinite number of oy, ¢, infinite number of £, axea

Dya B, 884, two O, (perpendicular to each other and to the other C,), two oe
{through 5,)

Dia E, Oy 0185, three C, (perpendicular to C,), 4, threa a4

Pea E, OOy U8y S5§-55-5;, four 0, {perpendioular to 0,), four aq

Dy B, Oy Oh-O4-Ci-8,,- 548,51, five C, (perpendicular to Oy), , ive ag

Dy B, O Oy-O5-O-O88,8 555452, six O, (perpendioular to J,), six oa

&, same as ¢,

L g™ same as ¢

s same as Fgp

7y B, Ox S5,

Lt same as ¥,

e E, O-Ch-8,-54 %

7, samne as @y,
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group Symmetry elementa

&y E, 0,0y 08835585

Fa H, four Cy—C}, three J,—5 5% {mutually perpendicular), six 4 (see Fig. 3-6.2)

n E, four Cy—03-8 Sy, three 00y C¢5 St (mutually perpendicular), six C,, 1,
three on, aix Oa (Seo Fig. 3-6.3)

t Axes which coinside are linked, o.g. 0,-03-8,-S1.

1 For reasons which will becoms clear later on, the ¢ planes in ¥4, €¢v. Fu, and Py
and the C, axes in @,, P,, D, and P, are conventionally separated into two types:
the planes into oy and o4 planee and the sxeas into Cy and €} axea. Thess distinctions are
shown in Fig. 3-6.1, where it ia apparent that in ¢,y and ¥y, the planes labelled g4 do
not fulfill the requirement of Table 2-3.1. Nonethelees, the notation given is that re-
commended by R. 8. Mulliken, (Journal of Chemical Physsce 28, 1987 (1955)). We will
not bother with the differences between the C) and C; axed in 2, and @, as thess point
groups have no chemical significance.

§ 5} is the element ocorresponding to rotation about an axis by 5-2%/3 (or 2-2¢/3)
followed by a reflection in the plane perpendicular to that axis, We cannot use the
symbol §; as this is identical with O} (see § 2-3 page 13). A similar argument holds for
S} and 5.

the symmetry elements for each point group is given in Table 3-6.3
and in Fig. 3-6.4 we show some molecular examples.

3-7. Determination of molecular point groups

With experience one comes to recognize the point group to which a
molecule belongs simply by analogy with some other known molecule.
However, until one builds up a memory file of the point groups of
representative molecules, it is best to use some systematic method. A
scheme which will enable the reader to do this is shown in Table 3-7.1
and to illustrate how it works, we will consider three typical cases.

Take, for example, the bent triatomic molecule B—A—B (say,
H,0). Following Table 3-7.1, it is not linear, it does not have two or
more (', with » = 3, it does have a O, axis but there are not # C, axes
perpendicular to this axis, it does possess two o, (vertical) planes, it
therefore must belong to the ¥;, point group.

Next, take the square planar molecule AB, (say, PtCI{™), it is not
linear, it does not have two or more O, with n > 3 (though it does
have one), its principal axis is ¢, and there are four C, axes perpen-
dicular to this axis, the plane of the molecule is a o}, plane and therefore
it belongs to the 2,, point group. Notice that this molecule also
possesses oy planes, but the o, plane is enough to associate it with the

2 4, point group.

Point Groups 3

%’41 ™ ,,"d
\\ ,/ "—o'
“"'a Above and below the
plane are different
Pt ’I, .

o,
€, N i

g o O

Above and below the
plane are different

Py, ~ /C”: oy
~ 7 _--C4,0,
———— —. Above and below the
3% plane are the same
- // \\
rd ~ .
2%

Above and below the
plane are the same

F16. 3-6.1. Some special notations for the point groups €y, v, P, and P .

Finally, consider the puckered octagon (say, S,), it is not linear,
does not have two or more C, with n > 3, its principal axis is C, and
there are four C, axes perpendicular to this axis, there is no g, plane,
there are, however, four ¢, planes, the molecule consequently belongs
to the 2, point group.
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“3 (Cy-8¢83)

(CrCy) .

A -
A e
v ’

’

KN
pPar I
e .

b

Fr1a. 3.6.2. Tetrahedron inscribed in & cube. The z, the y, and the z axes are all
Cy—5,-5¢ axes. The four body diagonals through g, b, ¢, and d are C,~C} axes. The six
planes normal to & sube face and passing through a tetrahedral edge are as planes.

Appendix
A. 3-1. The Rearrangsment Theorsm

This theorem states that in a group table each row or eolumn contains
each element once and once only i.e. each row and each column is some
permutation of the group elements. The proof is as follows: suppose for a
group of elements, K, 4, B, C, D, and F, the element ¥ appeared twice in
the column having B as the right member of the combination. We would

have, ,
ave. say AB=F oand DB=F

where 4 and D are two different elements of the group. Combining each of
these equations with B~ on the right hand side of each side of each equation

gives: ABB-' = FB' DBB' — FB-
AE — FB DE — FB!
A=Fp D= FB?

Since the combination FB-! is uniquely defined, we have 4 = D. But we
postulated the group elements to be all different, so that 4 and D eannot

Fi1a. 3-6.3. Octahedron inscribed in a cube. The x, the y, and the z axes are all C—C,~
C:—-S‘—-S: axes. The four body diagonals are 0,—0:4,—8: axes. The six axee through the
origin parsallel to face diegonals are U, axes. The 2y, 2z, and yz planes are oy planes.
The six planes normal t¢ a oube face and passing through a disgonal are o4 plance

€,
"""
planar
({i
Br g _H
m———(:—-‘(‘/'
H' \ B

trans-staggered

end-on view
H

/l\

Br F
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g‘
Ci
o
c, O H

Cl-C-CI and H-C-H planes
at an angle # r x »/2

y
a H
D-O=——CZH
2‘: Cl \H

neither staggered or eclipsed

R

H H
o=
¢, H H

H-C-H planes at an angle
*nxnf2

H H
4
4
4
-~
”f'l ~
S’ C
H: s 2

end-on view

Fi1o. 3.8.4. Molecular examples of the more important point groups.
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z,

H H
Cq=a-H—(———-(C—H

neither staggered
or eclipsed

Fia. 3-6.4 (Cont.). Molecular examples of the more important point groups.

view down the A-A-A
triangular face

.
o

(sce Fig. 3-6.1)

¢, M
Con
(see Fig. 3-6.1)
€, .
H Cl ===
éx H e U
C=e=0
Cl H
planar
o), = molecular plane
the (', axis is perpendicular
to the page
“a

planar

o, =molecular plane

the ¢y axis is perpendicular
to the page
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2. 3h
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end-on view

F1g. 3-6.4 (Cont.). Molecular examples of the more important point groups.
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A

Bo—B7

(see Fig. 3-6-1)
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O

(see Fig. 3-6-1)

Fia. 3-6.4 (Cont.}. Molecular examples of the more important point groups.
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F1a. 3-6.4 (Cont.). Molecular examples of the more important point groups.
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TaBLE 3-7.1
A flow chart for determining the point group of a molecule

| €0 s b T G s Gy Lot S T O S ]

Yes Two or more
Chvmn=32

Select €, with highest
n, nCy L to G2
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be identical. Hence F or any other element cannot appear twice in the same
column and because each row or column contains the same number of
clements as there are in the group, each element must appear once.

PROBLEMS

3.1. Determine the point groups of the following: (¢} CH,CIF; (b) NH,; (¢c) BCly;
(@) allene; (e) 1,3,5-trichlorobenzene, (f) trans-Pt(NH,),Cl, (considered as
square planar); (g) BFCIBr.

3.2. Determine the point groups of the following octahedral compou.uds (a)
CoNgy; (b} CoNgA; (c) cis-CoN,A,; (d) trans-CoN A,; () cis-cis- -CoNyA,;
(f) trans-cis-CoNgA,.

3.3. Determine the point groups of the following: (a) chair form of cyclohexane
(ignoring the H's); (b} boat form of eyclohexane (ignoring the H's); (c}
staggered C;Hg; (d) eclipsed CyHg; (e) between staggered and eclipsed C,H,.

3.4. Determine the point groups of the following: (a} ivy leaf; (b) iris; (¢) starfish;
(d} ice crystal; (e) twin-bladed propellor; (f) rectangular bar; {g) hexagonal
bathroom tile; () swastika; (¢} temnis ball {with seam); (j) Chinese abacus
(counters all in their lowest positions); (k) ying-yang.

3.6. Determine the point groups of the following: (a) a square-based pyramid;
(b) a right circular cone; (c) & square lamina; (d) a square lamina with the top
and bottom sides painted differently; (e} a right circular cylinder; (f) &
right circular cylinder with the two ends painted differently; (g) a right
circular eylinder with a stripe painted parallel to the axis.

3.6. What is the point group for the tris(ethylenediamine)ecobalt (111} ion?

3.7. For which point groups can a molecule (a) have a dipole moment, (b) be
optically active?



4. Matrices

4-1. Introduction

WE have shown how the symmetry operations for a molecule form a
point group and we have introduced the notation which allows us to
classify point groups. The next step which leads to further progress is
to find sets of malrices which behave in a fashion similar to the sym-
metry operations; that is, matrices which are homomorphic with the
symmetry operations (see § 3-4). These matrices will be said to represent
the symmetry operations. Matrix representations of molecular point
groups paraphrase in a mathematical way the symmetry of a molecule
and are central to all our applications of group theory to chemistry.
There are many theorems in mathematics concerning matrix repre-
sentations and once the link between representations and point groups
has been made, these theorems can immediately be invoked for solving
chemical problems as different as the molecular orbital theory of
benzene and the classification of the vibrational levels of methane.
But before we can discuss these matrix representations it is necessary
to understand something about the properties of matrices themselves.
Therefore in this chapter we define a matrix, describe the algebra of
matrices, and introduce the matrix eigenvalue equation and the
subject of similarity transformations. The reader who is in awe of the
large number of definitions and theorems in this chapter may, if he
wishes, go straight to Chapter 6 and then pick up the material on
matrices in slow stages as it is required in the succeeding chapters.

The various theorems for matrices are proven in the appendices to
this chapter but these proofs are not essential for the understanding of
future chapters and may be ignored by the reader who finds the
mathematics too heavy going. In Appendix A.4-1 certain special
matrices and terms are defined and these will crop up in the future;
the reader is therefore advised to make himself familiar with them.
They are summarized in Table 4-1.1.

4-2. Definitions {matrices and determinants)

A matriz is a rectangular array of terms (numbers or symbols) called
elements which are written between parentheses or double lines, e.g.

(al by o a; b ¢
or
a, by ey

ay by ¢
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TABLE 4-1.1
Special matrices and terms

Symbols (see also List of symbols, p. xv)
A?* = oonjugate complex of matrix 4
A = transpose of matrix 4
At = adjoint of matrix 4
4! = inverse of matrix A
det(A) = determinant of matrix 4
Trace(4) = sum of diagonal elements of matrix 4
&4 = Kronecker delta (equals 0 if § 5= j,
equals 1 if + = j)

Definitiona}
(A-:)u = {d,)*
(A), = A4y

(AN, = (4,)*
A-14 = AA ' =K

Spectal matrices

Identity matrix Ay =8,

Null matrix Ay =0

Diagonal matrix Ay =ddid;, # 0
A real mairix A =4+

A symmetric matrix A =4

An Hermitian matrix 4=24"

A unitary matrix At = 4

An orthogonal matrix A=4a

1 4, or (A), is the element in the ith row and
sth column of matrix 4.

There is a definite algebra associated with matrices (see § 4-3). In this
book we will only be concerned with square matrices (where the
number of rows equals the number of columns) or with single row or
single column matrices. We will use the double line notation, e.g.

A,y 4, A, -1 i 0
Ay Ay, Ag |, 2 38 i
Ay, Age Ay -1 0 1
Row and column matrices, e.g. a
4, 4, A,, b
c
Z11

1y ®13 Xz Zyalls

Zn

can be used to define the components of a vector. In general we will
use a capital italic letter to symbolize a matrix and an element in
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the ith row and jth column of matrix 4 will be written as 4,,, e.g. if
1 2 3
A=|l4 7 B8
9 5 6
then 4,, = 8.

The number of rows (or columns) in a square matrix is called the
order of the matrix.

The reader must not confuse square matrices with determinants. A
determinant is a square array of elements symbolizing the sum of
certain products of the elements. Unlike a matrix, a determinant has a
definite quantitative value. A single atraight vertical line on either

@, b
side of an array indicates a determinant, e.g. " !'is a determinant
Qg Uy
of second order whose value is a,b;—a,b,:
& b
= a,by—agh, (4-2.1)
ay by

a b o
and @, b, ¢,|is a determinant of third order whose value is

ay by ¢
@109C5+a3D5C) +agb1Cy — 3Dy —ash 05 — a1yt

In general, a determinant is equal to the sum of the products of the
elements in any given column {(or row) with their corresponding
cofactors; the cofactor of an element, o7, is the determinant, of next
lower order, obtained by striking out the row ¢ and the column j in
which the element lies, multiplied by (—1)‘+, e.g.
e, b o

by ;3
dg by €y = @, 9+ +agly = a X{(—1)*X by Cs
2y by ¢y
by, ¢ b, ¢
+ay X (—1)*x% +as X (—1)t x
3 C3 2 Cg
= 04(bgCs —yes) —a3(b10s —b301) +ag(bcy —b4cy) (4-2.2)
a b ¢ by ¢,
or |a; by ¢y =a,F+bHpte s =a,x{(—1)'x by ¢4
ag by ¢
a. [ a
+o, x(—12x| e x(—=1px| T T = ete.
s Cy @23 Oy
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Hence, we may successively break down any determinant into products
involving lower order determinants, until second order determinants are
reached, the values of which are given by egn (4-2.1).

The determinant of a square matrix is the determinant obtained by
considering the array of elements in the matrix as a determinant; if
the matrix is 4 we will write the determinant as det(A4) i.e. if

4, 4, .. A4,

Asl A’s " Au
Al - - S

Ay Ay .. An.

then Ay Ay ... 4,
A, A, ... A,

det(A)-_- . . .

ar Ay o A4,

4-3. Matrix algebra

The algebra of matrices gives rules for (1) equality, (2) addition and
subtraction, (3) multiplication, and (4) ‘division’ as well as (6) an
asgociative and & distributive law. It also includes definitions of (8) a
transpose, adjoint and inverse of a matrix.

(1} Equality. Two matrices 4 and B are equal if, and only if,
A, = B, for all { and j,

1 2

and A = B, then B =
3 4

e.g. ifAd =

(2) Addition and subtraction. Matrices may be added and subtracted
only if they are of the same dimensions. Under these circumstances,
the sum of 4 and B is given by the matrix C,

A+B =0,
where O, = A;,+B,-, for all i and j, e.g.

1 2
3 4

5 6
7 8

6 8
10 12

I
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Under the same circumstanoces, the subtraction of B from A produces

the matrix C, A—B =C,
where C; = A,— B, for all ¢+ and 3, e.g.
1 2 5 6 —4 —4
3 af |7 8] “ —4 —4l
From this, it follows that multiplying & matrix 4 by a number ¢
produces a matrix B, B —cA,

whose elements are given by B,, = cA4,, for all 1 and j,
3 6
9 12

1 2
3 4

e.g. 3

{3) Multiplication. Two matrices 4 and B may only be multiplied
together (called matrix multiplication) if the number of columns in 4,
say 7, equals the number of rows in B; the product is then defined

a8 the matrix C, C — AB,
whose elements are given by the equation:
Cy= 3 A,B,, (4-3.1)
ol

for all 5 and j. If the matrix 4 has m rows and » columns (an m xn
matrix) and the matrix B has » rows and p columns (an n xp matrix,)
the matrix C will have m rows and p columns (an m Xp matrix). The
following equations are examples of matrix multiplication:

1 2 5 6l |19 22 . “s.2)
3 4 7 8 43 50
5 6 12 |23 3¢ ’ 3.3)
7 8 3 4 31 46
1 2 3 1 14
4 5 6 2 | =| 32 i, (4-3.4)
78 9 3 50
1 2 3
In 2 sill4 5 6“:[30 36 42|. (4-3.5)
7 8 9
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An easy way of remembering how to carry out matrix multiplication is
to realize that in doing so, one takes succeeding rows in the Jirst matrix
multiplied vectorially by succeeding columns in the second matrix, the
sth row and jth column producing the 3, j element in the product; or
schematically :

I

More than two matrices can be multiplied together; one simply uses
the multiplication rule more than once, multiplying pairs of matrices
at a time (see eqn (4-3.12)). For the product of three matrices,

D = ARcC,

the general element of the product is given by:

D“ = g é A{IBEmCmI (4'3.6)

for all 4 and j, where r is the number of columns in 4 which must be
the same as the number of rows in B and s is the number of columns
in B which must be the same as the number of rows in C (see problem
4.3). Notice the restrictions which apply to the number of rows and
columns in matrices which are to be multiplied together.

It is apparent from the examples in eqn (4-3.2) and (4-3.3), that, in
general, matrices do not commute, i.e. AB % BA. For this reason care
must be taken when matrix equations are being manipulated and one
must remember that, like operators, the order in which matrices are
multiplied together can be significant.

One of the uses of matrices is to express sets of linear equations in a
compact form, for example with the above definition of matrix multipli-
cation, it is possible to write the equations:

Apn -+ Ay + A5y, =z,
Apth +Asys+Agayy = 2, (4-3.7)
Anth +Asys+Agy, = T3

4y, A,y A, k21 z;
4y, Ay A, e || = N T "
All A:z Asa Ys Ty

AY =X (4-3.8)

in the form:

or
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where A, A, 4, Y x,
A= 4y Ay Ag | Y={w | X =| =z,
Ay A, Ay Ys Xy

Furthermore, if, coupled with these equations, there is also the set of
equations Buz+Biyza+Byzs = 4

B2y + Bygza+ Bag2s = ¥,
Byy2,+ Byszy -+ Bagzy = ¥

then Y — BZ,
where B, B, B, zZ
B =| By, B,y By and Z = 1| z4
By, B,y By, %3
Thﬂrefore ( A B) Z=2X.

This result can be expressed in the following way : if the transformation
of z’s to y’s is defined by a matrix B and that of ¥'s to z’s by a matrix
A, then the transformation of 2’s to x’s is defined by the matrix AB.
(4) ‘Division’. As with operators, ‘division’ can only be accomplished
through an inverse process. Every matrix A which has a non-zero
determinant, det{A4) #* 0,
is said to be non-singular. For such, and only such, matrices, an
snverse A—! can be defined by the following equation:
AA = 414 ~ E, (4-3.9)
where E is the identity or unit matrix (see Appendix A.4-1(a)). The

matrix operation which is equivalent to division is matrix multiplication
by an inverse, e.g. if

AB =C (4-3.10)
we may write ABB- = OB (4-3.11)
or AE = CB-!
or A = CB.

Notice that when we multiply eqn (4-3.10) by B! to produce eqn
(4-3.11), a8 matrices do not neceasarily commute, we must do so on
the right-hand side of both sides of the equation. A method for finding
the inverse of a non-singular matrix is given in Appendix A.4-2. From
this methed it is apparent why A-! is only defined when det(4} # 0.
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This alsc implies that only square matrices can have an inverse, since
only square matrices have a determinant.
{5) Associative and distributive laws. These laws are respectively:

A(BC) = (AB)C, (4-3.12)

and A(B+C) = AB+AC. (4-3.13)
(6) Transpose, adjoint, and inverse of a matrix. The inverse has been
defined in (4) above and the transpose and adjoint are defined in
Appendix A.4-1 and Table 4-1.1. The reader is left to prove (see

problem 4.1) that the transpose, adjoint, and inverse of the product of
two matrices are given by:

AB — BA, (4-3.14)
(4B)t — B4, (4-3.15)
(AB)-! = B-14-. (4-3.16)

4-4. The matrix eigenvalue equation
For every square matrix 4 of order n there is an eigenvalue equation
of the form: Az — 2z, {4-4.1)

where x is a column matrix (with dimensions n x 1) and 2 is a number
or scalar. The solutions of this equation, and in general there will be n
which are distinet, are the values of A (called the eigenvalues) and the
corresponding column matrices z (called the eigenvectors). The equation
can be expressed in words by saying that matrix 4 multiplied on the
right by the column matrix x produces the same column matrix
simply multiplied by a number.

We can distinguish between the several solutions of eqn (4-4.1) with
subascripts and write the different eigenvectors which correspond to the

different eigenvalues 4,, 4,, ... , 4, a8 =,, , ... , &, Or
x5 L9 Zyp
Tay Ty Zon
s ° s »
xnl znz znn

and we can write eqn (4-4.1) as

Az, = 2z, i=12,..,n (4-4.2)
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It is customary to require the eigenvectors to be normalized (see
Appendix A .4-1(g)), that is:

zlz, = ||1j| i=12..mn
or
1y
Zay
I .zn |l - =1 s=12..n
Ty
or "
kz Tty = 1 t=12..m. (4-4.3)
=]

This restriction cuts out those superfluous eigenvectors which differ
merely by a constant factor,
An alternative form for eqn (4-4.2) is

(4 —AE)x, =0 1i=12..n (4-4.4)

where F is the identity matrix and ¢ the null matrix (see Appendix
A.4-1(f)). For this equation to have non-trivial solutions (that is, ex-
cluding solutions of the form x, = 0), it is necessary that the eigen-
values 1, obey the determinantal equation:

det(d —AE) = 0. (4-4.5)

The proof of this is given in Appendix A.4-3. Eqn (4-4.5) is often called
the characteristic equation of matrix 4 and it is essentially a poly-
nomial equation in 1 with n roots: A,, 4,, ... 4,. These roots or eigen-
values, which guarantee non-trivial eigenvectors, once found can be
used, one by one, in the solution of eqn (4-4.4) coupled with eqn
(4-4.3); each eigenvalue i, leading to a corresponding normalized
eigenvector z, (see Appendix A .4-5).

There are two important theorems for the eigenvalues and eigen-
vectors of eqns (4-4.4). If a matrix 4 is Hermitian (4 = A", see
Appendix A.4-1(e)), its eigenvalues are real and its eigenvectors are
orthogonal to each other if they correspond to different eigenvalues i.e.
if the eigenvalues are non-degenerate (i, # 1,). This result can be
expressed as A=1F  i=12..,n

zlr, = 0 or ,2; x;kle =0 (A 7= 4) (4-4.6)
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and, if we combine eqn (4-4.6) with eqn (4-4.3), we have
k=12,..n
1=12,...n

z.x] = “6“" (4-4.7)

provided that A is Hermitian and the roots of eqn (4-4.5) are distinct.
Eqgns (4-4.7) define a set of normalized orthogonal eigenvectors.

The other theorem states that the matrix X formed by using the
eigenvectors of a Hermitian matrix as its columns is unitary (for the
definition of a unitary matrix, see Appendix A.4-1(g)). The proof of
these two theorems is given in Appendix A.4-3.

The matrix X formed from the eigenvectors of & matrix 4 may be
used to combine the solutions of Ax = Az into a single equation:

AX — XA (4-4.8)
where i o .. 0
0 A 0
A= )
o 0 ... A,

Notice the order is XA not AX; the reader is left to confirm this fact
for himself. In eqn (4-4.8), if 4 is Hermitian then of course X will be
unitary and if 4 is symmetric then X will be orthogonal.

4-5. Similarity transformations

If a matrix @ exists such that
Q14Q = B, (4-5.1)

then the matrices 4 and B are said to be related by a similarity irans-
Jormation. Such transformations will be very important in what follows
later. It is immediately apparent that eqn (4-5.1) parallels the relation
that exists between two symmetry operations that belong to the same
class (see § 3-5). If @ is a unitary matrix (see Appendix A.4-1(g)), then
A and B are said to be related by a unstary transformation.

There are a number of useful theorems concerning matrices which
are related by a similarity transformation. If the matrices 4 and B are
related by a similarity transformation, then their determinants,
eigenvalues, and traces (sum of the diagonal elements) will be identical :

det{4) = det(B), (4-5.2)
A'sof A = A’s of B, (4-5.3)
Trace(A4) = Trace(B). (4-5.4)
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If A’ = @AQ, B’ = @1 BQ, ¢’ = @'CQ ete., then any relationship
between A4, B, C etc. is also satisfied by A4’, B’, C etc.

If the result of a similarity transformation is to produce a diagonal
matrix (see Appendix A.4-1(b)), then the process is called diagonalsz-
ation. If the matrices A and B can be diagonalized by the same matrix,
then A and B commute.

If X is the matrix formed from the eigenvectors of a matrix 4, then
the similarity transformation X—4X will produce a diagonal matrix
whose elements are the eigenvalues of A. Furthermore, if 4 is Hermitian,
then X will be unitary and therefore we can see that a Hermitian
matrix can always be diagonalized by a unitary transformation, and a
symmetric matrix by an orthogonal transformation.

The final theorem is that a unitary transformation leaves a unitary
matrix unitary.

These theorems are proven in Appendix A.4-4 and, in Appendix
A.4-5, we show, with an example, how a matrix can be diagonalized.

Appendices

A.4-1. Special matrices

(a) Tdentity matriz. This is a square matrix whose diagonal elements are
all unity and whose off-diagonal elements are all zero:

1 0 0
0 1 0.
E=|0 0 1 (A.4-1.1}
ie.
Eu=<’um[0 ‘#J
1 i=j.

(The symbol &, is called Kronecker delta.) Other symbols for the identity
matrix are 7 and 1 and it is sometimes called the unit matrix. It can be of
any order and can be inserted anywhere in any matrix equation.

(b) Diagonal mairiz. Any square matrix for which all the off-diagonal
elements are zero and at least one of the diagonal elements is non-zero is said to be
diagonal:

g 0 0
0O d, O
0 0 d

D= (A.4-1.2)
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ie. Dis = Oif§ #j, Dy # 0 if § = j.

(c) Real mairiz. The conjugate complex f* of a number or function f is
obtained by replacing i everywhere in f by —i. Theconjugate complexof matrix
A is written as A* and the elements of A* are the conjugate complexes of
the elements of 4, ie. (4%}, = (4,)*. For a real mairix all the elements

are real and therefore A= A+ (A4-1.3)
ie. Ay = Aug* for all § and 4.

(d) Symmetric matriz. The transpose of a matrix A is cbtained by changing
rows into columns (or vice versa) and is given the symbol A (or, sometimes,
A’), e.g. the transpose of

1 2 3 1 4 7
A—=|4 5 8| is A=12 5 &l
7 8 9 3 6 ¢

For a symmetric matrix:

A=A, (A4-1.4)
ie. A, = A4,, for all i and j. The matrix
1 2 3
A=1]2 4 5
3 5 6

is symmetric. All symmetric matrices must be square.

(¢) Hermitian matriz. The adjoint of a matrix A is obtained by taking the
complex conjugate of the transpose and is given the symbol A?ie. AT = A*.
{Mathematioians frequently call A' the Hermitian conjugate and reserve
the term adjoint for the transposed matrix of the cofactors of 4.) The
adjoint of

1 4 i 1 ef 3
A=|e 2 —ifl is A'=|4 2 e
3 et 1 —i i 1
A Hermitian matrix is one which obeys the equation
aA=A" (A4-1.5)
ie. A, = A}, for all i and j. For example,
1 i et
A=[—1 2 4
et 4 3
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is Hermitian. All Hermitian matrices must be square. For real matrices
the criterion for being Hermitian or symmetrio is the same.

(f) Null (or zero) malriz. A matrix of any dimension whose elements are
all zero: 0 0

00 .
o=. . . . .| (A.4-1.8)

i.e. 8, = 0 for all s and j.
(g) Unitary mairiz. A matrix is unitary if its adjoint (see (¢) above) is

equal to its inverse: At 4
or A'A—E, (A4-1.7)
or 44" =&

The columns (or rows) of a unitary matrix are related to a set of orthogonal
normalized vectors in a general vector space. If, for example,

4, 4y 4,
Aal All b Alu
a=| - . .
A, A, .. A,
is unitary then 4'4 = E and

n e 1=1,2,..n

A4, =0, (A.4-1.8)

k=1 i=1L2..n

and this is the requirement, by definition, for the general vectors:

»
ri=Sde, i=12..n (A.4-1.9)
Kol

to be orthogonal and normalized i.e. the columns of 4 form the orthogonal,
normalized vectors ty. In eqn (A.4-1.9) the ¢, (¥ = 1, 2 ... n) are unit orthog-
onal base vectors.
Alternatively, using 4 A = E, we have
n * t=1,2...n
> Ad, =8, (A.4-1.10}
] j=L2..=»

and this ia the requirement, by definition, for the general vectors:

»
8=Adse, i=12.n (A.4-1.11)
doem]
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to be orthogonal and normalized, i.e. the rows of 4 form the orthogonal,
normalized vectors s,.
All unitary matrices are aquare.

1 0 o
A=[0 0 o
0 o' O
where w = exp(27i/3) is an example of a unitary matrix. For this matrix
the adjoint is
1 ¢ O
A'=0 0 o
0 ' 0

and it is left to the reader to show that A4t = A4 = K.

(b) Orthogonal matriz. A matrix is orthogonal if its transpose (see (d)
above) is equal to its inverse:

d =4 (A.4-1.12)

For real matrices (see (¢) above) the criterion for being orthogonal or unitary
is the same. All orthogonal matrices are square and

cos@ sginf O
A ={—sinf cosl O

0 0 1
is an example of an orthogonal matrix,

A.8-2. Method for determining the inverss of a matrix
Consider the n equations:
Y= A7+ A3 .+ 4,7,
Yo = Aalx]'*— Allxl "'+ Alnxil
(A4-2.1)

Yn = A 2+ A7 ...+ A2,

they may be written in matrix notation as

L 4, 4, ... 4,, z,
Y 4, 4,y .. 4, Ty
Ya A, A, ... A llli=z,
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or ¥ = AX. Multiplying both sides of this equation by A4-1, the inverse of
A, we get X = A1Y or, if we let

A, A, ... A,
A, AL, ... A,

A_l — - )

4, A, .. 4,

x, A, Ay o AL (e
T An A . Ay, ||y
L il (A4-2.2)
Ty A:Il ;l‘l b A;ns Y
Now the determinant of 4 can be written as
4,, 4, - 4,
‘4:1 Au b A:n
det(d) = | ) )

-

Anl Anl b A,"'
= Apy +AnALy+.. .+ 4,9,
= Ayl s+ Ags A gq+...+ A 0 s

= Al-d1n+Aln'd2u+"'+Ann‘Mﬂﬂ
where &f,, is the cofactor of 4, (see § 4-2). If we multiply the first of eqns
(A.4-2.1) by &¢,,, the second by f,;,..., the nth by &/, and add, we get:
Suy1+ A ..+ Y,
=(Ap S+ A Ayt .+ Ay o )
H( Ay + Age g+ A g A a)s

+...
F( A1, 1+ gl 1+ Ay )2,
—det(4)z,
Al. Al’ A Alll Alﬂ Al’ i Alu
Ay Ay ... A, Ay, Agy ... Ay,
+ - . . Z, ...+ . ) ' T,

An! 'Anl o Alm Anu An! Ann
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Since determinants with two or more identical columns or rows are zero,
this equation becomes
A Y+ A Y, Ay, = det(A)x, (A.4-2.3)
_ n Ty Yg oot el Yn (A.4-2.4)
det(.A) det{4) det(A)
In the same fashion, with the other cofactors, we can obtain
‘d d 232 ‘Mul

or

N+

X

— 18 4 oo Ad.24
= 30V T aeya) det(4) 7" ( )
— dlﬂ d!u dﬁ

= ny Ad2.4
= 2ot ) Taon ) ¥V aer(ay ¥ ( )

Comparison of these equations with equn (A.4-2.2) shows that

‘dll MII .. dﬂl

det(d) det{d) = det(Ad)
dl! dli dﬂ%

det{4) det(d) = det(d)

A1 = ) . . (A.4.2.5)

‘ﬂln MSu dﬂn

det(4) det(4) ~  det(4)

So that for any square matrix 4
(A7), = o, [det(4), (A4-2.6)

where (4-1),, is the element in the ith row and jth column of the inverse of
matrix 4 and &, the cofactor of 4,,, is (—1)*** times the determinant of
the lower order matrix obtained from A4 by striking out the Jjth row and ith
column.

Clearly, eqn (A.4-2.6), and therefore an inverse, cannot be defined if
det(4) is zero (i.e. if A is singular); also, for det(A4) to exist, 4 must be square,

Eqgns. (A.4-2.4) give the solution of any set of equations in n variables;
the method is known as Cramer’s rule.

A.4-3. Theorems for sigenvectors

(a) Theorem. If A, are chosen as the roots of the equation : det(4d—AE) == 0,
then the equations:

(A=ABx, =0 $i=12..n (A.4-3.1)

will give non-trivial eigenvectors (column matrices) .
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Proof. (A—A,E)x; = 0 is simply the matrix notation for a set of simul-
taneous equations which are equivalent to eqns (A.4-2.1) with y, = 0.
Consequently, if the elements of z, are x,,, x,,, ... #,,, We have, by comparison
with eqn (A.4-2.3),

det(d — A, E)z,, = 0,

det(d—A,E)z,, = 0,

det(A—A,E)z,, = 0.

If the oclumn matrix z, is to be non-zero, then at least one of its elements,
8ay ,;, must be non-zero and since det(d —A,E)x,, = 0, thia implies that
det(A—AE) = 0. Hence, for non-trivial solutions (z; # 0) the 1, must be
the roots of the equation det(4d —AiE) = 0.

(b) Theorem. If A is Hermitian, its eigenvalues are real and its eigenvectors
are orthogonal to each other provided they correspond to non-degenerate
eigenvalues.

Proof. Consider eqn (4-4.2);
Az, = Az, (A.4-3.2)

taking the adjoint of this equation (see eqn (4-3.15)), we have

z]AT= A*x!  (since ,is a soalar, i} = 1)
or zld = Alfz} (since A is Hermitian, At — 4)
and multiplying by z, produces

zl Az, = A¥xlz,. (A4-3.3)
But from eqn (A.4-3.2)
z] Az, = Axlz, (being a scalar, i, commutes) (A4-34)
and subtraction of eqn (A.4-3.4) from eqn (A.4-3.3) gives (A?—A)zlz, = 0.
Since z}z, + 0 (see eqn (4-4.3)),
Ar=4a, (A 4-3.5)
or A, is real.
Now consider the pair of equations
Az, = Az,
Az, = A,

Taking the adjoint of the first and multiplying on the right hand side by
= gives oAz, = 23l
= /'l‘x,fx, (since A, is real). (A.4-3.6)
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Multiplying the second equation on the left hand side by =} and subtracting
it from eqn (A.4-3.6) gives
(4 — A)x}z, —= 0 and therefore, if A, y 4,
ziz,= 0,
i.e. the eigenvectors are orthogonal.

{¢) Theorem. The matrix X formed by using the eigenveotors of a Hermitian
matrix as its columns is unitary.

Proof. The eigenvectors of a Hermitian matrix, if normalized and non-

(A4-3.7)

degenerate, obey the relation 2}z, = ||8,,|| and consequently we can write:
zf 2 ... 24 |lllen T - Za 1 0 ... 0
zh zh . ||| T Taz .. T, 01 .. 0
8, xd . xr e Zne e Tpa 00 ... 1

or X'X = FE and therefore X! = X~ and X is unitary.

Corollary. The matrix X, formed by using the eigenvectors of a symmetric
matrix as its eolumns is orthogonal. This follows from the fact that the
eigenvectors of & symmetric matrix obey the relationship &z, = |8,

A.§-4, Theorems for similarity transformations
(@) Theorem. If Q1AQ = B, then det{d) = det(B).
Proof. Since det(XY) = det(X)det(Y) (see Appendix A.4-68) we have;
det(B) = det{Q V)det(A4Q)

= det(Q~)det(4)det(Q)
= det(@")det{@)det(4)
= det{@Q)det(A4)
== det(F)det{A4)
= det(4).

(b) Theorem. If Q2AQ = B, then the eigenvalues of 4 and B are identical.

Froof. Sines (B—AE) = (¢ 4Q—1E)
— Q41D
det(B—AE) — det{Q~")det(A — AE)det(Q)
— det(Q-'Q)det(A —AE)
— det(A—AE).

The roots of det(4d—AK) = 0 and det{B—AE) = 0 must be identical, since
the equations are identical.

we have
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(¢) Theorem. 1f Q2 AQ = B, then
Trace(4) = Trace(B).
Trace(B) = 3 B,
Z: 2’: g (@ Mud2Q,; (see eqn (4-3.6))
§ Ay, ; 240 Na
§ A,,(QQ g

z A0,
[y

Proo

1S

I
S VIRVIRVIRY

tk

= Trace(A4).

(d)' The?rem. If A" = Q14Q, B' = Q'BQ, ¢’ = @1CQ ete., then any
relationship between A, B, O, etc. is also satisfied by 4’, B’, O ete.

Proof. Consider, as an example,

D = ABC
then,
D =Q'Dg
= QABCQ
= Q4QQ'BQQ'CQ
= A'B'C".

(¢) Theorem. If A and B are two matrices whioch can be diagonalized by
the same matrix §) then 4 and B commute.

Proof. Sincs,
Q4@ =D,
@'BQ = D,
where D, and D, are diagonal matrices, then
QHABQ = (' 4QNQ"BQ)
= DD, (diagonal matrices commute)
= D,D,
= (@T'BA)(¢4Q)
=Q(BAR
and therefore AB = BA and 4 and B commute.

(f) Theorem. If X ias the matrix formed from the eigenvectors of 4, then
X 14X is a diagonal matrix A composed of the eigenvalues of 4.

Proof. From eqn (4-4.8) we have
AX = XA
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where A is the diagonal matrix composed of the eigenvalues of 4 and multi-
plying on the left of both sides of this equation by X—? we obtain directly
X 14X = A, (Ad4-4.1)

If A is Hermitian, then X will be unitary (Appendix A.4-3(c)) and the
transformation eqn (A.4-4.1) will be unitary. If 4 is symmetric, X and the
transformation will be orthogonal.

{g) Theorem. A unitary transformation leaves a unitary matrix unitary.
Proof. Since X = U—tAU, where 4 and U are unitary, we have:
X'=(AUYWO (see eqn (4-3.16))

= U140
Xt=(am (O  (see eqn (4-3.15))

— UTAT(U—l)f‘
But, by definition, Ut = U-1, A' = 41, and (U-)t = (U")* = U. Thus

X1 = X' and X is unitary.
Likewise, if A and U are orthogonal (real as well as unitary) then so is X.

A.8-5. The diagonalization of a matrix or how to find the sigenvaluss and
sigenvactors of a matrix

Consider the diagonalization of the matrix:

—1 0 —4
A= 0 2 0
2 o b

This may be accomplished with a matrix X which is composed of the eigen-
vectors of A. The diagonal matrix created will consist of the eigenvalues of
A. The steps involved are: (1} the determination of the eigenvalues A,, 4,,
and 1, from det{4 — AE) = 0, (2) the determination (using these eigenvalues)
of the eigenvectora

Tn Tye Tia
Zp |l » | ®aal]» @nd [[%eg)| from the equations
x, Zgg F
Zy o .
(A — 1B [z =||Of|, amd FTapm=1 (:=1273)
za0 0 =1

and (3) the determination of X~ from X.
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(1) The determinantal equation is:
—1—-2 0 —4
det(A—1E)=]| © 2-2 0 |=0
2 0 8—4

or A3—6A*+114—6 = 0. The roots of this equation are: 4, = 1, ; — 2, and

Ay = 3. These are the eigenvalues.

{2) With these roots, we can now be assured of non-trivial eigenvectors.

A=1
—2 0 —4( |z, 0
0 1 Zafl =0
2 0 2y 0
—2z,;, —dx4, = 0
xgy = 0

22,4425 = 0 (redundant)
zh+2h+25h = 1 (normalization).

Thorefore, g = —2/\/5, 7, =0, snd =z, =1/ /5
Ay =2
-3 0 —4| (=, 0
0 0 offlzall=1|o0
2 0 31t zae 0
—3z,,—4zgy =0
0 =0 (redundant)
2z, 4323 = 0
Ty +x33+a3y = 1 {(normalization).
Therefore,

2, =0, Tyg=1, and zz = 0.
Ay =3
—4 0 —4| || =y

0 —1 o[zl =
2 o 21| a8
—4z,,— 424 = 0
—%gy =0
22,3+ 223 = 0 (redundant)
z}+x3+a3; = 1 (normalization).

o ©
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Therefore,
eretore Ty =1/y/2, %3 =0, and =z = —1//2.
Hence
~21 /6 0 12
x={ o 1 o

/6 0 —1//2
(3) (X7),, = &,/det(X) (see Appendix A.4-2)
Z ;i = cofactor of X,
det(X) = 1/,/10

o

—/6 ¢ - /5
X 1= 0 1 of.
-2 0 —2./2
The reader can confirm that X-AX = A
—J/5 o — /5 —1 0 —4 —2/{/5 0 1//2
ie, 0 1 0 0 2 o 0 1
—J2 0 —2./2 2 (] 5 1/,/6 0 —1//2
1 00
=0 2 0}.
0 0 3

Note, that had 4 been Hermitian, step (3) would have been simply
X~ = X", since in such a case X would have been unitary. The rearrange-
ment of the columns in X with the parallel rearrangement of the 4, in A and
the concomitant changes in X-1, or the changing of the sign of every element
in & given column of X with the concomitant changes in X—1, all constitute

other valid diagonalizations.

A.4-8. Proof that det (AB) = dat (4} det (B/

Necessarily the matrices 4 and B must be square and of the same order.

Consider matrices of the order 2

AB . AllBl_l—*_Al’BSl AIIBII+A1'33’
AgyByy+ AgaByy A Bigt+ Ay B,
A.B A..B A, B A, B
det(AB) — ' 11711 1k lil + ‘ 1111 11413
A .1B11 A.IBI.’ A"’BI]. ASSB’.

AllB,ll Al’BIi, + l Al!Bll All‘Biil
AllBll AI!.B:I.I ASSBII AllBti
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The first and last determinants vanish since, if the constant faotor A4,,4,,
is removed from the first determinant, its two rows are identical and removal
of the constant factor 4,,4,, from the last determinant leaves it also with
two identical rows. Therefore:

By By By, Bas
det{AB) = A4,,A4,, + A4y
By, By B, By,
By B,
= (AuAn - AnAn)l
B’1 B,

= det({A4)det(B).

The proof can be extended to matrices of higher order.

4.1.

4.2,

4.3.

4.4.

4.5.

4.6,
4.7.

PROBLEMS

Show that for two matrices 4 and B: (a) :iUB = BA, ®) (AB)! = B*A?t,
and (¢} (4B)1 = B-14-1,

Prove that (a) the product of two unitary matrices is also unitary and (b)
the inverse of a unitary matrix is unitary.

Show that if four matrices obey the equation D = ABC, then
Dy = A By Cyy.
'y 2": 2 ixBuCy
(a) Show that Trace (4B) = > ¥ A4,B,,. (b) Given two matrices A and B
rally

of dimensions n xm and m xn respectively, prove Trace (4B) = Trace
(BA).

Prove that for any matrix 4: (a) AAY and A'A are Hermitian, (&) (4 +41)
and i(A —At) are Hermitian.

If AB = BA, show that QAQ and QBQ commute if @ is orthogonal.

Find the inverse of:

1 0 0 O
a+idb c+id 01 0 0
{a) . 2l b) »
—c+id a—ib 0 01 0
0 0 0 1
0 a
@ fo & of, @ [[* —*f @ |° 7. esa
e 0 0 b a 1 0
2 3 1
oy J|3 &
c 0 2

4.8.

4.9.

4.10,

4.12,

Matrices "

Show that the matricea:

Yve —1fyv2 Yve  1ve
, ®) , and
Yve  1ve2 Yve —1/v2
cos 6 sin 8
(c) .
sin8 —cos@

are orthogonal.

Show that if 1,, 4,.... A4, are the eigenvalues of 4, then A4;,—k, i,—*%,...
4,—k aro the eigenvalues of 4 —kE.

Obtain the eigenvalues and normalized eigenvectora of:

. If

T —s 5 10 8 cos@ 8nf O
(a) s ull’ %) 10 2 -2, (¢) —sin® cos§ Of.
8 -2 11 0 ] 1
—1/2  —+4/3/2 0 1/2 v3/2 0
A=ll—-y32 12 0| and @=|—-y3/2 12 o
0 0 2 0 o i

show that Q—14Q is diagonal.
Diagonalize the following matrices:

5 10 8 cosf@ sinf O

@ (10 2 —2f, @ | —sin® cose of, and
8§ —2 1 ] o 1
2 4-—i

© N —14"'




5. Matrix representations

5-1. Introduction

TEE best way to understand how the symmetry operations of a
molecule influence its properties is to study the sets of matrices which
mirror, by their group table (see § 3-4), those same operations. Such
sets of matrices, homomorphic with the point group, are said to be,
or to form, a represeniation of the point group. Essentially, when we
introduce a matrix representation, we are replacing the geometry of
symmetry operations with the algebra of matrices. Matrix represen-
tations are the crucial link between the symmetry of a molecule and the
theorems which determine such practical things as to whether a given
infra-red band should be present or not. Mastery of the ideas in this
chapter is essential to the proper understanding of subsequent chapters.

There are several different methods of obtaining aets of matrices
which are homomorphic with a given point group and in this chapter
we discuss these methods in some detail. One way is to consider the
effect that a symmetry operation has on the Cartesian coordinates of
some point (or, equivalently, on some position vector) in the molecule.
Another way is to consider the effect that a symmetry operation has
on one or more sets of base vectors (coordinate axes) within the mole-
cule.

A third and more complex way is to first find another set of operators
0,, which have certain fundamental properties and are homomorphic
with the symmetry operations, and then find a set of matrices which
are homomorphic with these new operators. This last step is achieved
by consideration of the effect that the O, have on some ‘family’ of
mathematical functions (a so-called function space) e.g. a set of five
d-orbitals; it will be seen that the choice of the function space and the
choice of the O, are bound up with each other. It is important to
realize that this method involves two steps as opposed to the first two
methods which involve only one.

Since it is easy in this subject to ‘lose sight of the forest for the trees’,
the scheme which we are following in these introductory chapters is
summarized in Fig. 5-1.1. The reader will probably find it helpful to
keep this plan in mind while he pursues the material of this chapter.

For the sake of completeness, various proofs are given in the ap-
pendices but, as in Chapter 4, knowledge of them is not critical for the
reader whe wants to have only a general understanding of the subject.
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[ molecular symmetry opemtioﬁl

|

matrix . matrix representations homorphic group
representations from sets of base of transformation
from a position vectors operators Oy
vector
matrix
representations of
transformation
operators Op using
different function
spaces
matrix representations
of point groups
non-equivalent eqguivalent
represehtations representations

|

reducible irreducible
Tepresentations representations

character tables

F1a. 5-1.1. Summary.

§-2. Symmetry operations on a position vector

A position vector p is & quantity which defines the location of some
point P in three-dimensional physical space (see Fig. 5-2.1). If O is
the origin of some set of space-fixed axes, the length p of OP and the
direction of OF with respect to these axes constitute the position vector.
If the set of space-fixed axes are mutually perpendicular, the position
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Fi1c. 5-2.1. A position vector.

of some point P may also be located by its coordinates z,, x,, and x,
with respect to these axes. (Note that for ease of notation later on,
Xy, %y, and x4 will be used in preference to the more familiar z, g, and z.)
If, coinciding with these fixed axes, there are three unit vectors (vectors
of unit length) e,, e,, and e,, then any position vector p can be ex-
pressed as P = %,0; 17,03+ %58,. (5-2.1)
Corresponding to each point in space z,, x;, and x, there is therefore a
Pposition vector given by eqn (6-2.1) and we can think interchangeably
of & point and the position vector which defines its location (see Fig.
5-2.2). The mutually perpendicular unit vectors e,, e,, and e,, are
called orthogonal base vectors and z,, z,, and ,, which double as
coordinates, are called the components of the position vector p.

We now consider the effect that symmetry operations have on a
point or position vector.

(1) Rotation. In Fig. 5-2.3 we show the effect on p of a clockwise
rotation by 6 (= 2=/n) about the direction e; i.e. C,. If d is the pro-
jection of OP on the plane which contains e, and e, and ¢ the angle
it makes with e,, then the following relations hold between the com-
ponents (coordinates) of the initial vector p (point P) z,, ,, and x;

€3
P (xy.24,2,)

Q e

N o

€

F16. 5-2.2. Relation between a point and a position veotor,

Matrix Representations 15

€, r €, P’

€, Xy

F1ia. 5-2.3. Effect of C, on p.

and those of the final vector p’ (point P’){, «;, and_z}:
z; = d cos{$—0)
= d cos ¢ cos §+d sin ¢ sin ¢
= d{x,/d)cos 8 +d(z,/d)sin 6
=, c08 B}z, 8in & (5-2.2)
zz = d sin{¢$ —8)
=d sin ¢ cos 8—d cos ¢ sin 8
= d(x,/d)cos @ —d{x,/d)sin 0
= —x, 8in 042, cos 6 (5-2.3)
Ty = Xy (6-2.4)
Eqns (5-2.2) to (5-2.4) can be combined together (see eqn {4-3.8))
to give:

x cos® sinf O] =
|| = —sin @ cos® OfH=|. {5-2.5)
A 0 0 1[{ || z4

Necessarily, exactly the same set of equations can be obtained from
an anti-clockwise rotation of § about e, of the base vectors e, and ey, i.e.
moving the point clockwise is the same as moving the laboratory axes
anti-clockwise.

Egn (5-2.5) can be used to define a matrix D{C,) which corresponds
to the operation C,:

z &y
wl = D(C) ||z, (5-2.0)
4 Z
cos@ 8ind O
DC)=|—sin® cos@® 0. (6-2.7)
0 0 1
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The inverse of D(C,) is easily found to be (see eqn (A.4-2.6)):

cosd —sinfB O
DIC,) ! =|sind cos@ O (5-2.8)
0 0 1

and we see that since D(C,)~! = D(C,), the matrix D(C,) is orthogonal.
As D(C,) is real, this implies that it will also be unitary: D(C,)*=
D).

It is apparent that D(C,)~! corresponds to a clockwise rotation by
—B8 or an anti-clockwise rotation by 6, i.e.

cos} —snf 0 ' cos(—0) sin{—8) 0
D(C,)* =|sin® cos® Of = |—sin(—8) cos(—6) o0
0 0 1 i 0 0 1

= D(C3").

(2) Reflection. In Fig. 5-2.4 the effect on p of a reflection in the
plane containing e, and es(s.,) is shown. Clearly,

T = —x,
Ty = Ty
zy = Ty
Z 1 0 o=
Al = o 1 of =], (5-2.9)
z; 0 0 1f]lzs
and —1 0 0
Do) =i 0 1 of. (5-2.10)
0 0
€3
P b ]
4
Q 43 r/ e, e am—
/4,———-'/ '
€ ey

F1a. 5-2.4. Effeot of @y, on p.
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Similarly we can also obtain:

10 o0 1 o0 o
D(e) =10 1 0f and D(oy) =(0 —1 o], (5-2.11)
0 0 —1 0 01

where o,, is the plane containing e, and e, and o,, is the plane con-
taining e, and e,.

(3) Inversion. The effect of inversion # on a vector will be to invert it,
consequently:

z; = —& —1 0 0
w3 = —xy and D) = o -1 off. (5-2.12)
Ty = —x, 1] o -1

(4) Rotation-reflection. Consider a rotation by 6 (= 2x/n) about the
e, base vector, followed by reflection in the ¢y, plane. The components
of the point vector p (or, the coordinates of the point P) will be first
transformed by the rotation, as in (1), and then these new components
(coordinates) will be transformed by the reflection, as in (2). Using
matrix notation, these two transformations can be combined into one
step (see § 4-3(3)) and we get,

1 o 0 cos @ gin@ O cos @ sin O 0
D(S,} =0 1 Offfl —sin @ cosd O =f —sin8 cos® of.
0 0 —1 0 0 1 0 0 —1
’ (5-2.13)
(5) Identity. This is the ‘do nothing’ operation, hence:
z, == 1 0 0
#i=2, and DE)=l0 1 of =&, (5-2.14)
Ty = 24 c 0 1

where E is the identity matrix.

All of the above matrices are orthogonal.

To summarize, we have found that the effect of any symmetry
operation R on a position vector p = z,e, +-z,e, +x,e, can be expressed

a8 Rp = R(z,e,+x,€; +-738;) = xie, +-xje, +1le, (6-2.15)

where

x; zy
zi|| = D(R) || s (5-2.16)
x) B2
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and D(R) is a matrix of order three, characteristic of R. Eqn (5-2.16)
can also be written in the form

3
Ty = z Dk!(R)xl k=123 (5-2.17)
Sl

where Dy, (R) is the element in the kth row and jth column of matrix
D(R) and =, (j = 1, 2, 3) are the coordinates of a point or the com-
ponents of & position vector.

5-3. Matrix representations for €, and &,,

Now let us consider two specific point groups: (1) €,, and (2) €s,.
(1) €,,. A molecule belonging to this point group is planar frans-
C,H,Cl, H c1
N e
C=C

7N
cl H

The point group is composed of four symmetry operations: E, C,, i,
and o, and the group table is given in Table 5-3.1. This table shows the
effect of combining one operation with another.

Following the discussion in § 5-2, the matrices which correspond
to the four symmetry operations are

1 0 0 -1 0 0
DE)y=|[0o 1 o}, DC) =]| o -1 of,
0 0 1 0 o0 1
-1 o0 o 1 0
Dify=|| 0 —1 of, and D) =0 1 of, (531
6 o —1 0 0 —

where the base vectors have been chosen such that e; coincides w?th
0, and e, and e, lie in the ¢, plane. D(C,) has been found by replacing
0 by = in eqn (5-2.7).
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TABLE 5-3.1
Group table for €yt

E ¢ | on
E E C, i oy
C, C, E an i
i 1 e E C,
LY on i C, E

T The order of combining is AR
where 4 is given at the sido of the
table and B at the top of the table.
Using matrix multiplication as the combining operation, we can
construct a group table for these four matrices (Table 5-3.2) e.g.

-1 o0 ojl-1 o o 1 0 o
DC)DE) ==|] ¢ —1 o 0 —1 of =lo 1 0
0 0 1 0 o0 —1 00 —1

= D{oy).

It is apparent from this table that the four matrices form a group, since

{a) the product of any two matrices is one of the four,

(b) one matrix, D(E) = F, is such that when combined with the
four, it leaves them unchanged,

(¢} the associative law holds for matrices,

(d) each of the four matrices has an inverse which is one of the four,
ie. D(E)™* = I(E), D(C,)' = D(C,), D(i)~* = D(i), and
Dioy)! = D(ay,).

Comparison of Tables 5-3.1 and 5-3.2 shows that they are identical
in structure (though the elements and combining rules are different)
and consequently the matrix group is homomorphic with the point
group; we say that the four matrices form a representation of Ean-

(2) €,,. Ammonia is an example of a molecule belonging to this
point group and it has six symmetry operations which obey the group
table introduced in Chapter 3 (Table 3-4.1). If we set up base vectors

TABLE 5-3.2
Group table for the four matrices in eqn (8-3.0)t

D(E) D(C,} D) Doy}
D(E) D(E) D(Cy) D) D{an)
D(Cy) D(C,) INE) D(an) D(1)
D) D) Dion) D(E) D(C,)
Di{an) D(on) Did) D(C,) D(E}

+ The order of matrix multiplication is A B whers 4 is
given at the side of the table and B at the top of the table.



80 Matrix Reprasentations
e;(Cy- %)

€3

top-view

&

Fr1a. 5-3.1, Axes for the €,y point group. The origins of e,, e;, and e, are at the centrs
of mass; o, gy, and g are perpendicular to the page.

in accordance with Fig. 5-3.1, then the matrices which correspond to E,
a, (reflection in the planec containing e, and e,), C; (rotation about
e, with 8 = 2#/3), and Cj (rotation about e, with 6 — 47/3) are

1 0 0 -1 0 0
DE) =l{o 1 o], D(al) = 0o 1 of
0 0-1 0 0 1
—1/2 V32 0 —1/2 —4/3/2 ©
D(C,) = || —v/3/2 —1/2 Of, and D(C3) = | +/3/2 —1f2 olff.
0 o 1 0 0 1

(5-3.2)
Using the same technique as we did for S, in § 5-2(4), we can also
obtain the matrices D(s]) and D(o}), namely

—1/2 —+/3/2 Oflfl—1 0O o]
D(a}) = D(CHD(a}) = |[4/3/2 —1/2 0 01 0
o 0 1 o1
/2 —4/3/2 0
=ll—+3/2 —1/2 o0 (5-3.3)
0 0 1
and —~1/2  4/3/2 O||—-1 o o
D(o7) = D(Cy)D(ay) = || —4/3/2 —1/2 0O 6 1 0
0 0 1 0
/2 4/3/2 0
=1+3/2 —1/2 of. (6-3.4)
0 o 1
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TABLE 5-3.3
Group table for the six mairices in eqns (5-3.2) to (5-3.4)1

D(E) D(er) Do) Dioy)  D(Gy) D(ch
D(E) D(E) Dig,)  Dla}) D@  D(C)  D(C)
D(ov) D(gy) D(E) D(C)  D(C))  Disy) D(dly)
D(o3) D(ay) D(C)  D(E) D(C,)  D(dy) D{ay)
D{oy) D(ay) D(Cy)  D(C})  D(E) D(o}) D(ay)
D(Cy) D(Cy) D(oy)  Dioy)  Dley)  D(C)) D(E)
D) D(CY) D@y)  Dioy)  D(sy)  D(E) D(C,)

+ The order of matrix multiplication is A B where 4 is given at the side of the table and
B at the top of the table. Also C} = C;l.

These six matrices form a group for which the combining rule is matrix
multiplication and the group table is that in Table 5-3.3 (the reader is
left to confirm this for himself). Since this table is identical in structure
to Table 3-4.1, we say that the six matrices form a representation of €,,.

It is apparent that we can always get a set of 3 X3 matrices, which
form a representation of a given point group, by consideration of the
effect that the symmetry operations of the point group have on a
position vector. Why this works is shown pictorially in Fig. 5-3.2 for the
o, = a,C; operation of ¥,,. The symmetry operation C, on the
position vector p followed by o, on p’ produces a vector p” which is
coincidental with the one produced by the operation o, on p. The
matrices D(C,), D(s,), D(o;) then simply mirror what is being done
to the point vector. The general mathematical proof that, if symmetry
operations R, §, and T obey the relation SR = T, then the matrices
D(R), D(S), and D(T), found as above, obey the relation

D(S)D(R) = D(T)

is given in Appendix A.5-1.

4§ 7,
” A A ™
a/, AN N 4 \\
\ C , \ . / .
\Y — %3 ; \ O . / \
4 £ (rp iy, g) 4 N s ;
S O O AN/ L / \f’"\
AU [, I ———— [ A . Y
(.l' "y :) s b .
1T Tz (€. et N |

F1a. 5-3.2. The effect of C, and o}, on a position vector (or point) in the base of a
symmetrio tripod,
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6-4. Matrix representations derived from base vectors

It is also possible to construct matrix representations by considering
the effect that the symmetry operations of & point group have on one
or more sets of base vectors. We will consider two cases, both using the
%3 point group as an example: (1) the set of base vectors e,, e,;, and
€,, introduced in § 5-2; (2) three sets of mutually perpendicular base
vectors, each located at the foot of a symmetric tripod.

’

e A e}

Fia. 5-4.1. The effect of C, and oy on a set of base vectors in the base of a symmetric
tripod. @,, ;, and e, are perpendicular to the page.

(1) In Fig. 5-4.1 we show, as an example, the effect of the symmetry
operations C;, o, and o, on the three base vectors e,, e,, and e,. The
operation C, produces new vectors e;, €;, and e, and these are trans-
formed to ej, €3, and e; by ¢,. The operation o will, since o, = a,C,,
transform e,, e,, and e, directly into e], €], and e;. Therefore, we
anticipate that there will be matrices which will link these sets of base
vectors and which will behave like the symmetry operations.

If C; transforms e,, e,, and e, to e;, e;, and e;, then we have (see
Fig. 5-4.2)

Cie, = e; = —&,/2—(+/3/2)e,

Cie; = e; = (1v/3/2)e, —ey2

Cies — €, — &
which can be written as

Cie, = e, = :21 Dy (Cye,, k=123 (5-4.1)

where 12 4/32 0

D(Cg) =1 —4/3/2 —1/2 0]

0 0 1

The general equation linking e, and e, will be given by:

3
Rek = e,]: = z .D”‘(R)ej, k - I, 2, 3. (5'4.2)
Jaml
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cs €y e!-e;
30°
€1 -
r el
t300
e; |
e =— (sin 30°)e, — (cos 30°)e, e =—e
e; =(cos 30°)e,"— (sin 30°) ey ei=e,
e;=e; el=eg

¥1a. 6-4.2. Relation between original and tranaformed base vestora for C,, o, and o},
¢, and e, are perpendioular to the page.

It is important to notice that the way in which we have formed the
matrix D(R) is different from the way we did things when we were
considering position vectors (cf. eqn (5-2.17)): the components of the
new base vectors are used as the columns of D(R) whereas, before, the
components of the new position vector were used as the rows of a
matrix. This is what is implied by the order of the subacripts on D in
eqn (5-4.2): jk rather than kj. Necessarily

€ €
e;|| does mot equal D(R) | e,
e, €y

There is nothing particularly subtle about what we have done, it
simply ensures (see the proof in Appendix A.5-2) that the matrices so
formed will indeed represent the point group.

As a general rule, equations involving coordinates or components of a
position vector will be written in the form:

= ; Qes%ys
and those involving functions (see § 5-7) or base vectors, in the form:
fe = ; a5
e; = ; a44€4.

or

In much of the mathematics which follows it is important to besar
this rule in mind.
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If ¢/, transforms e,, e,, and e, to ej, e;, and e; (see Fig. 5-4.2) we find

c.e, =€ = —e;
o€y = € = €&
oLe, — €3 = €,

and

-1 0 0
Dely=| o 1 o
0 0 1

If o7 transforms e,, €,, and e, to €,, €, and e, (see Fig. 5-4.2) we find

ore, = €] = €/2—(+/3(2)e;
ole; = e = —(1/3/2)e,-¢€,f2
ote; = €; = e,
and 12 —/3/2 0
D(el) = —v3i2 -1z o

0 0 1

The reader may confirm that D{a,)D(C,) = D(a}). It is always true
that if SR = T and D(S), D(R), and D(T) are defined as in eqn (5-4.2),
then D{(S)D(R) = D(T); this is proved in Appendix A.5-2. That the
matrices found in this way from the base vectors are identical with
those found from consideration of the position vector (§ 5-2) is proven
in Appendix A.5-3. The base veotors e,, €, and e, are said to form a
basis for a representation of a point group.

(2) If we place sets of base vectors at the feet of a symmetric tripod,
these too can produce a matrix representation, as seen in Fig. 5-4.3.

et

c,
es , . ey’
) . ?\(e,) (e.’),<
4 A AN 7 ”
Fd ] N C, € \ ’ S \es
/ N
4 ere

,/ e N —— _L. // \\
/s N e ’ rd e" e e
7 N I / 1w\ nd 1 (e" 4
ey ___(&ZT_.e _______ e el ———2 _I)
ra 5 (e‘.) ( ;) 3
e, e, e, e e es’

F16. 5-4.3. Symmetry operations on base veotors located at the feet of & symimetrie
tripod. e,, €,, ¢, ete. are perpendicular to the page.
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(By the way, the sets of base vectors need not be parallel.) For example,
under C;, we have

Cye, = €] = —e,/2—(4/3/2)e,
Ciey = € = (1/3/2)e,—e;2
Cse; — €; = ¢,
Ciee = e = —e,[2—(~/3/2)e,
Cyey = e5 = (1/3/2)e,—e,f2
Cieg =5 = e,
Cie; = e; = —e,/2—(1/3[2)e,
Cyey = €; = (+/3/2)e, —e,f2
Ciey = €5 = €,
and we can write N
Cre, = €; = 3 D,y(Cyle,, k=12..9 (5-4.3)
=1
and
D(Cs) =
0 0 0 0 0 0 —1/2 +/3/2 0
0 0 0 0 0 0 —v3/2 —1/2 o
0 0 0 0 0 0 0 0 1
—1/2 4/3/2 0 0 0 ] ] 0 0
—/3/2 —1/2 0 0 0 0 0 0 0
] 0 1 0 0 0 0 0 0
0 0 0 —1/2 /3/2 0 0 0 0
0 0 0 —/32 —1/2 o 0 0 0
0 0 0 0 0 1 0 0 ]
or, in general, n
Re, e, =3 Dy(Rle,, k=12..n (5-4.4)
j=1

Again, notice the ordering of the subscripts in eqn (5-4.4). The proof
that the D(R) constructed in this way form a representation of the
point group is the same as the proof given in Appendix A.5-2. It is
obvicous that there are a large number of different matrix repre-
sentations which can be found by choosing different sets of base
vectors. The base vectors chosen are said to form a basis for the repre-
sentation of the point group. As with the symmetry opersations acting
on a position vector, the matrices formed by considering base vectors
will be orthogonal.
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5-5 Function spacs

Now we come to a totally different method for producing matrix
representations of a point group; a methed which involves the concept
of a function space. The word apace is used in this context in a mathe-
matical sense and should not be confused with the more familiar three-
dimensional physical space. A function space is a collection or family
of mathematical functions which obeys certain rules. Thesge rules are a
generalization of those which apply to the family of position vectors in
physical space and in order to help in understanding them, the corre-
sponding veotor rule will be put in square brackets after each function
rule.

Consider the set of functions: f,, f,, .... If they are to belong to a
function space, then the following rules and definitions must hold true.

(1) The addition of any two functions must produce a third function
which is also a member of the collection of functions, i.e. belongs
to the function space [vector addition of any two position
vectors p, and p, produces ancther position vector p,].

(2) The multiplication of any of the functions by a number must
produce a function which is also included in the collection
[ap, is also a position vector].

(3) The rules in (1) and (2) can be combined together: any function
which is a linear combination of f,, fy, ... {i.e. a,f; +a,f;+...) must
also be a member of the collection [a,p;}3;p;+asp, is also a
position vector].

(4) The scalar product of any two funetions is defined as:

Faf) = [£2f,dr,

where integration is over all the variables of f; and f,, [the scalar
product of two position vectors p and p’ is

p'p' == (p’ p’) =Ppl co8s a’
where 0 is the angle between the two vectors, and if (e,, e,) = 3,,,
t,j =1,2, 3 and
P = 2,8, +Z,8, 1 24€,,
P’ = z1e, - xaey 230y,
(P, P') = mzi +xsTa +2973 -

(5) If » of the functions f,,f, ... are linearly independent (i.e.
afi+asfs+... a f. = O onlyifa, = a, = ... a, = 0), then any of
the other functions of the space can be expressed as some linear

then
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combination of these » functions, [in physical space e,, e,, e, or
any three non-coplanar vectors, are linearly independent and any
position vector can be expressed in terms of them]. The =
linearly-independent functions are said to span the function
space and the space is said to be n-dimensional, [e,, €,, and e,
span physical space which is three-dimensional]. Put another
way, n is the smallest number of functions from which it is
possible to produce all the other funetions which belong to the
funetion space. If the n linearly-independent functions are chosen
such that the scalar product (f,f,) = 8,,, 1,7 = 1,2 ... n, then
they are said to be orthomormal (orthogonal and normalized),
[e,, €;, and e, are unit orthogonal vectors]. It is always possible
.to create n orthonormal functions from n linearly-independent
functions. Furthermore, orthonormal functions are always
linearly independent and therefore, by definition, the maximum
number of orthonormal functions in an n-dimensional space is
7, [in a general n-dimensional vector space, so far not discussed,
the maximum number of orthogonal vectors is n; orthogonality
being defined by

P; D) = 22 +a2+... 2,2, = 0]
(6) An n-dimensional function space is defined by specifying =
mutually orthogonal, normalized, linearly-independent functions,
[e,, e,, and e, define physical space]; they are called orthonormal
basis functions.
Now let us consider two examples of a function space. The solutions
of the differential equation

dr
%z —f(), 0 <2 < 2n
Hz) = filx), folz), ..., form a function space, since any combination of

them is also a solution of the equation and therefore & member of the
collection of functions, i.e.

d* dz d?
az [fd=) +fi(2)] = @f{(z) + g,f:(x) = —fx)fi{z)
= —[fx)+f,(=)],
ds ds
- d?,[af((x)] = aEx‘g.fi(x) = a[—fix)] = —[af(x)]

and

ds
T @ Fafi@) + ) = —[afi(@) +aufa@) +.. 1.
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The general solution of this equation is f,(z) = a, cos x+b,sin z,
where a, and b, are arbitrary constants. Since cosz and sinz are
linearly independent («, cos #+ o, sin z is only equal to zero for all
if ¢, = a; = 0) and orthogonal ({3” cos  sin z dx = 0), the orthonormal
basis functions for this two-dimensional function space are cos z/+/#
and sin xf4/7.

Consider the equation: Hy — Ev,

where H is a linear operator, y is some function and £ (called the eigen-
value) is a constant. If H is the Hamiltonian operator, this equation
will be the Schrodinger equation. If v, and y, are two solutions having
identical eigenvalues (E, = E,), they are said to be degenerate. It is
clear that, since H is defined as being linear,

H(y,+vy,) = Hy,+Hy, = E\p, +Eype = Ey(y1+v2)

and H{ay,) = aHy, = aE,p, = E,(ay,)

and any linear combination of degenerate solutions will also be a
solution of the equation. We can therefore say that any degenerate set
of solutions (corresponding to & given eigenvalue) of Hy = Evy forms a
function space. If n of the solutions are linearly independent, then they
can be chosen to be orthonormal and used as basis functions to define
an n-dimensional function space. If H is the Hamiltonian operator,
then the linearly-independent wavefunctions y = yj, ¥}, --. ¥, Which
correspond to E = E,, will be basis functions for an n-dimensional
function space. As an example, the three p-orbitals p,, p,, and p, of
atomic problems are degenerate and orthogonal and when normalized
form an orthonormal basis for the three-dimensional function space of
p-orbitals. Any p-orbital can be written, with respect to this basis, as

p =4a, g+aypu+a:pl'

In §5-9 we use a function space defined by d-orbitals. The six -
orbitals of benzene are another example of a function space.

5-6. Transformation operators (Oz/

Having defined a function space, we are now in the position of being
able to introduce a new group, homomorphic (see § 3-4) with a given
point group, in which the elements are transformation operators which
operate on the functions of some function space. We will denote the
transformation operator which corresponds to the symmetry operation
R by O,. Every O, will be defined with respect to some particular
function space (e.g. the wavefunctions belonging to a given energy
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level) and they will be such that
(1) they are linear: Ox(af) = a(OLf)
Ox(f+9) = Ouf+0pg, (6-6.1)

where a is any number and f and g are any two functions of the
funection space,

(2) O.f =1, (5-6.2)
where f* also belongs to the function space,

{3) the correspondence between R and O, retains the multiplication
rules, e.g. if T = SR, then

and

Orf = Os:f = O,(O,f). (6-6.3)
Necessarily there will be a unit operator O, (associated with E)
such that 0,0, = 0,0, = O, (5-6.4)
and each operator O, will have an inverse O}':
03'0, = 0,0;' = O, (5-6.5)
and, since 0, .0, = Oy,
03 = Opr. (5-6.6)

This set of transformation operators O, associated with the sym-
metry operations of a given point group will therefore have a group
table which is structurally the same as the one for the point group. In
the next section we show that, if we introduce a coordinate system
into the function space chosen for the O, we can define explicitly a
set of O satisfying eqns (5-6.1) to (5-6.6). The reader is warned that
since the eorrespondence between R and O, is s0 close, many books
{incorrectly) do not distinguish between them.

5-7. A satisfactory set of transformation operators [0x)

If an n-dimensional function space is defined by the set of linearly-
independent basis functions f,, f;, ... f;, ..., and f, and if these are
functions of three Cartesian coordinates z,, z,, and x,, then we can
define a transformation operator O, (corresponding to the symmetry
operation R) by the equations:

(Opf)(xh %2 T3) = ful®1, Te, 7y),  ¢=1,2...1m (8-7.1)

where a point in physical space with coordinates ,, x,, and x, is moved
by the symmetry operation R to the location #;, x,, and z;. In other
words, the new function Q, f, assigns the value of the old function f, at
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Z,, 3, and x; to the position z,, z;, and z,. Knowledge of f,, z;, x5, %,
x;, %5, and z; allows one to find the form of O,f, (see § 5-9). With this
definition, it can be shown that the O, are linear and that if T = SR,
then O, = O 0, (see Appendix A.5-4).

The requirement that Ogf; produces a function belonging to the
given function space (see egn (5-6.2)) will be met by the proper choice
of function space (see § 5-8). If this is the case, however, we can write,
for an n-dimensicnal function space defined by the linearly-independent.
basis functions f}, f; ..., and f,,,

Ouf. = ,fl DR, k=12..=n (5-7.2)

(notice the order of subscripting on D), i.e. the function O,f,, if it
belongs to the function space, must be some linear combination of
that space’s basis functions,

What is of supreme importance for us, is the fact that the nxn
matrices D(R) in eqn (5-7.2) will multiply in the same fashion as the
symmetry operations: if T = SR, then INT) = D(S)D(R), (see
Appendix A.5-6). The D(R) so found, therefore form an n-dimensional
representation of both the point group and the group of transformation
operators O, and the functions f,, f,, ... and f, are said to be a basis
for the representation.

The operators just described will leave the scalar product of two
functions of the function space unchanged: (O.f, ORf,) = (f., fi)-
Such operators are said to be unitary and they can slways be repre-
sented by unitary matrices (see § 6-4). The proof that the O, are
unitary follows from considering

(Fuf) = [ FHPULP) dre,
where P is a general point with coordinates z,, x,, and z, and
drp = dz, dx, dz,

is the volume element at P. Now a symmetry operation R will move
P to a point P’ with coordinates (z;, z;, and z;) and the volume element
to an equal volume element drp. = dz; dx; dx; situated at P’. Further-
more, the operator O, is defined such that f,(P) = (O,f,)(P’) and
J{(P) = (Ogf)(P’). Hence

[FHPIAP) dre = [ (0L PP UOLLNP)] drp
= [ HORfNPY*[(Of )P d7p
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since the range of integration extends over all points P or P’. Therefore,

(fout) = (Olfi' Olfl)' (5-7.3)
that is the scalar product is left unchanged.

Our definition of O, applied to functions of the coordinates z;, z,,
and z, of a point in physical space, but it can be generalized to apply
to functions of any number of variables, as long as we know how those
variables change under the symmetry operations. For example, if we
let X stand for a complete specification of the coordinates of all the
electrons (or all the nuclei) of some molecule, i.e.

1 1
X =a 2V, 20, ... 2™, 2, 2¥

for » electrons (nuclei), and if this specification becomes X’ under the
symmetry operation R, then we can define O, by

Opf(X’) = f(X), (6-7.4)

where f is a function of all the electronic (nuclear) coordinates. The
theorems in Appendices A.5-4 and A.5-6 also hold true for this more
general definition.

5-8. A caution

We have seen in the previous section that the definition of a set of
O,s is intimately bound up with some choice of function space. The
reader is cautioned, however, that not all function spaces can be used
to define O,s appropriate for a given point group. For example, the
functions cos z,, sin «,, cos x,, and sin 2, do not form a basis for a
representation of the €,, (symmetric tripod) point group; =, and =,
are the coordinates introduced before (see Fig. 5-2.2).

The four functions do define a funetion space, since the general
funetion is

Sf(z1, Ty} = a,c08 2, +a,sin x, +-a,cos z;+a,8in z,
and addition of any two such functions will produce a third which
belongs to the space, as does & number times any such function.

However, if we consider the C, operation of €,, (clockwise rotation
by 2n/3 about e;), then

3:1 = ( -z, + \/33'1)/2
Z; = (—+/32, —2,)/2

Xy = X,

o, inverting, 7 = (—xi—y/2zp)2
2y = (/321 —x1)/2
2y =2
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and selecting the basis function cos z;, we find

O, (cos x;) = cos 2, (definition of O,)
= co8 }(—%1—+/3%3)
or, equivalently,
O, (cos z,) = cos 3 —x; —+/32,).

Using the notation f; = cos z,, f, = sin x;, f; = cos x,, and f, = sin x,

it is clear that .
Oc,fr # 2 Dy(Cy)f,
3

Consequently, this function space does not provide a basis for a repre-
sentation of the ¥,, point group.

5-9. An example of determining Oxs and JfR)s for the €5, point group using the
d-orhital function space

A set of five real d-orbitals defines a function space. In spherical
polar coordinates r, 6, and ¢, they consist of a common radial function
times a combination of spherical harmonics Y7'(6, ¢}, I =2 and
m = 0, 4-1, +2. The combinations of the five spherical harmonics are
chosen such that the orbitals are real.

It is a well known property of spherical harmonies that if we shift
the point r, 8, and ¢ to r*, 8', and ¢',1 the resulting Y ;' (8", ¢') can be
expressed in terms of a linear combination of all the Y} (0, ¢) of the
same [ value (m’ = 0, +1 ... L{). The reverse is also true: ¥i'(0, ¢)
can be expressed as a linear combination of Y'(¢’, ¢'), with m’ = 0,

+1,... +1, and therefore,

O YN0, ¢") = Y76, 4)  (definition of Op)
= a linear combination of Y (6¢', ¢'), m' =0, +1,... 41

or 0,Y" = a linear combination of ¥,
or

5
0, d‘ = le D“(R) dfl

where d,, d,,... d; are real d-orbitals. The D(R) will form a repre-
sentation of the point group. It is apparent that as the above steps do
not specify a particular point group, the d-orbitals (or any set of
spherical harmonics of the same ! value) can be used as the basis for a
representation of any point group. With this knowledge, we can now

1t Note that in general, symmetry operations do not change the distanoe r of a point

from the origin if the latter is at the centre of mass. We oan therefore restrict ourselves
to shifta for which r is constant.
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use the d-orbital function space to determine a representation of the

sy point group.
We will define the five d-orbitals by the equations:

d, = (2f—=3)/2,

d; = x,,
d, = z,2,,
d, = x4%,,

d; = (3z3 —r)/(24/3),

where a common constant and radial function have been omitted {they
are not necessary for the purposes of our discussion), and =,, z,, and x,
are the Cartesian coordinates of a point with respect to the base vectors
€,, €,, and e, (see Fig. 5-3.1) and r is the distance of the point =,, =,,
and z, from the origin (centre of maas). The more familiar notation is
dy = dpa_y, dy = dyy, dg = dy; dy = dyas _ds =d,s.

We will first consider the operation of clockwise rotation by an
angle 8 about the e, axis and denote the corresponding transformation
operator and matrix by O, and D(f), respectively. The relations
between the coordinates of a point before (z,, x,, and z,) and after
(=1, 7, and z;) rotation are (see eqn (5-2.5))

x; = (cos 0)x, 4 (sin 8)x,,
zy = —(sin 8)z, + (cos 0)z,,

T3 = Xy,
or, taking the inverse:
#, = (cos f)z; —(sin O)s,
x; = (sin O)x: -+ (cos G)xs,
2, = 3.
From eqn (5-7.1), we have
O, d,(z}, x4, x3) = dy(y, #s, T3)
= (@ —zh)2
= [{(cos 8)x; —(sin 0)x3}*—{(sin O)z; +(cos O)x;}*]/2
= (cos 20)(x; —x3*)[2 — (sin 26)xx;
= (cos 20) d,(x1, x3, 23) —(sin 20) d,(x1, 73, 73)
or, dropping the parameters (they are now the same on both sides of
the equation): ¢ 3 _ (0o 26) d, —(sin 26) d,.
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In the same fashion, we can also obtain
0, d; = (8in 26) d, +(cos 26) d;
0O, d; = (cos 8) dy—(sin 6) d,
0,d, = (sin 6) dy+(cos ) d,
Og d5 = db'

These equations define the operator O, that is to say, they specify the
new functions created by applying the operator to each of the five basis

funections.
Introducing the equation

5
O. d{ = ,§ Dﬂ(ﬁ) d,'

we geb c0s20 sin20 0 o o
—sin 260 cos 28 0 o 0
D(6) = 1] 0 cos§ sind O
0 0 —sinf cos® O
0 0 0 0 1
(once again, notice the gubscripting in D,,(6)). Hence, if § =
—1/2  —./3/2 0 o o
V32 —1/2 0 0 o
DICy) =] o 0 —1/2  4/3/2 0
0 0 —v3/2 —1j2 0
0 0 0 0 1
and, if 6 = 4x/3, —1/2 432 0 0 0
—V/3/2 —1/2 0 0 0
DICH=| o 0 —1/2 —/3/2 0
0 0 432 —12 o
0 0 0 o 1

211/3,

(5-9.1)

(6-9.2)

Now, let us consider reflection in the o7 plane (see Fig. 5-4.1). We

have from eqn (5-3.3)

z, 1/2 —+/3/2 0 z,
znl|l=]—+32 -—-12 0 @yl
3 0 0 1 Ty

¥
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or the inverse =, 1/2 —+/3/2 0 x;
|| = || —4/8/2 -1z 0 3 il
zy 0 0 1 z5

Hence,

dy(2y, @5, 23) = (:c} - zg)/z
= {(321 —/3/2x)® —( —+/3/2z] —jx5)*}/2
= —Haz'—23")/2 — /3[2zx;
= —} dy(21, 5 25) —+/3/2 dy(x}, a3, x3)
dy(2y, 25, T) = z,2,
= (4z1—/3/222)( —/3(22] —}x3)
= —4/3/2 d,(z;, 22, %3) +14 ds(z1, 1, 23), ete.
Therefore,
Oav" d, (=1, 3, 23) = dy(2y, 24, T5)
= —4dy(x;, 23, x,’,)—\/3/2 dy(zy, 22, :'L‘;)
and 0,-dy = —}d,—v/3/2d,
and, likewise: Ovv’ dy = —4/3/2d,+1d,,
O,'. d, = 1d,—+/3/24,,
Oav' d, = _‘\/3/2 d,—}d,,

O, -ds = d,.
From these equations we obtain
—1/2 —4/3/2 0 0 0
—/3/2 12 0 0 0
D(e”) =i o 0 12 —4/3/2 0 (5-9.3)
0 0 —v/38j2 —1/2 0
0 0 0 0 1
The other symmetry operations of €,, give
1 0 0 0 o0
0 —1 0 0 o0
Dia)) =| 0 o —1 0 o |, (5-9.4)
0 0 01 0
0 0 0 0 1
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—1/2 +/3/2 o0 0 o
Vv38/2 1)2 0 0 0
Dy =1| o 0 /2 4/3f2 0 || (5-9.5)
0 0 32 —1/2 0
0 o 0 0 1
and 1 0000
01 0 0o o
DE)=|| 0 0 1 0 o (5-9.6)
0 0 0 1 0
0 0 0 0 1

The six 5x6 matrices specified by eqns (5-9.1) to (5-9.6) form a
five-dimensional representation of ¥,,; the basis functions for this
representation are the set of five d-orbitals.

It has probably not escaped the reader’s notice that eack of the above
matrices has the same structure, that is to say all their non-vanishing
elements occur in the same square blocks along the diagonal:

X X o0 o0 o
X X 0 o o
0 0 X X 0
0 0 X X o
0 0 0 0 X

What is not so obvious is that since the block structure is identical for
every symmetry operation, the individual blocks themselves, written as
matrices, form lower dimensional representations. Take, for example,

the block form matrices D(T) [0]
D(T) - » ’
(0] DXT)
DS
D{S) = ) [?] I’
[0] D*(S)
D'(R Y
by = |0
[0] D*(R)

where D'(T), D’'(S), D'(R) are square arrays of dimension nxn and
D"(T), D"(S), D°(R) are square arrays of dimension mxm and [0]
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represents a rectangular array of zeros, if D(T) = D(S)D(R), then the
matrix multiplication rule leads to the equations
DY(T) = D'(S)D'(R)

and D*(T) = D"(S)D"(R)
and oconsequently, the matrices D’(R) etc. and D"(R) ete. form two
lower-dimensional repreaentations.

Another feature of block form matrices is that if s matrix 4 is in
the block form: (4,] [0 [0]

(01 [4s] [0]
(0] [0] [4,]

(6-9.7)

then det(4) — det(4,)det(A4,)det(d;)... and if det(4) = O, then either

det(4,) = 0
or det(4,) =0 (5-9.8)
or det(4,) = 0 ete.

‘We will return to the topic of block form matrices in the next chapter;
it is the foundation of most of the theorems which follow.

5-10. Determinants as representations

‘We might note, in passing that, since det{4 B) = det(4d)det(B) (see
Appendix A.4-6), the determinants of any set of matrices which form
a representation will themselves act as a one-dimensional representation.
That is, if T = SR and D(T) = D(S)D(R) then

det{D(T)} = det{D(S)D(R)} = det{D(S)}det{D(R)},

and the group of numbers (or 1 X1 matrices) det { D(R)} etc. is homo-
morphic with the group of matrices,

5-11. Summary

In this chapter we have shown that there are very many different
sets of matrices which behave like the symmetry operations of a given
point group. We have constructed these so-called representations by
considering the action of the symmetry operations on a position vector
or on any number of base vectors. Alternatively, we have found that
we can find transformation operators O, which are homomorphic
with the symmetry operations and that from these we can construct
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representations by considering the actions of the O, on functions
belonging to some function space. In this way, the p-orbitals, ete.
form a basis of representation for any point group, the six =-orbitals
of benzene form a basis of representation for the @, point group, (see
Chapter 10) ete.

Our next task will be to try and organize, reduce and classify the
plethora of representations which we can now create. We will try to
eliminate from discussion those which are, in a certain sense, equivalent
and those which can, in a certain sense, be ‘broken down’ into simpler
(lower order) representations.

Where we have now got to and where we are going has already been
summarized in Fig. 5-1.1.

Appendices

A.5-1. Proof that, if the symmetry operations R, §, and 7 of a point group obey
the relation 7=SRA, the matrices OfR}. D{S). and D(T} found by ths con-
sideration of the effect of R, 5, and 7 on a position vector (or point),
gbey the relation 2 (T)=0{S}D(R)

P = x84 2,851 258,
Rp = p’ = z\e | xie,}xie,,
Sp’ = p” = zje,+xje, | zie,
and, if T = SR,
Tp = p" = aje, t-aze,+xjeq
(see Fig. 5-3.2), then, from eqn (5-2.17)

3
z, =3 DR, =123t
F=1

3
zy= 3 Dy(T)x, k=123 (A5-1.1)

f=1

3
2= S DS, k=123

{1

3 3
= 3 D53 DRz, k=123

fm=] Sl

$ 3
- z[ DH(S)D‘,(R)]x, k=123

J=1 Ls=1

(A.5-1.2)
Comparing eqns (A.5-1.1) and (A.5-1.2), we have
2 k=1,2,3
D, (T) =i§1 D (S)D,(R) §j=1,2,3

% D;,(R} is the matrix element in the ith row and jth solumn of matrix D{R).
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and, because of the matrix multiplication rule, this leads to the desired
result D(T) = D(S)D(R).

A.5-2. Proof that the matrices constsucted in eqn 5-4.2 (or aqn 5-4.4) form a
representation of the point group

Re, = 3 D,(R)e, E=1.2,...,n (N.B. subscript order)
o1
.
Se, = 3 D,(S)e, i=12 ...,n
=1

Te, =3 Dy(Tle;, k=12, ..,n (A.5-2.1)
=1

SRe, = 5| 3 Dt
Juu 1

_ él D,(R)Se, (ths: :3;1;1:1:;3 2(;I;embors are linear,

=§1Dn(R)§l Dyy(S)e,

=§; [ g’l D“(S)D,,,(R)]e, kE=1,2,...n (A5-2.2)
If SR = T, eqn {(A.5-2.1) and (A.5-2.2) must be identical and therefore

DuT) =3 D(S)Dp(R) }j if e

but this is just the matrix multiplication rule, se
D(T) = D(S)D(R).

A.5-3. Proof that the matrices derived from a position vector ars the sams as
thoss derived from a singls sot of base vectors

Consider

P = x84+ 250,
P’ = Rp = z,Re,{z,Re, +-z,Re,,

3
o = Re, =3 Dy(Rle, k=123 (A.5-3.1)
P
3 3 3
P = xleDn(R)e,+z,’§1D,,(R)e,+x,’le,,(R)e,

- [;z::{D"(R )z,:l o+ [lz;D,,(R)z,] et [li_‘D.,(R)z.] e

= zje,}z:e5-} 240,
&.’ﬂd henoe i s | e | ‘I 3
zy=3 Dy(R)e, i=1,2,3

Jaml
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or changing subscripts
3
2 = 2 Dy (R)x, k=1,23 (A.5-3.2)
d=1

Consequently, the same matrix D(R) defines z; through eqn (A-5-3.2) (or
eqgn (5-2.17)) and e} through eqn (A.5-3.1) (or eqn (5-4.2)).

A.5-4. Proof that the operators Ox are (1) linear, (2) homomorphic with the
symmetry operations A
(1) (a) If f is a function, ¢ & number and g = af, then
(Olg)(x]'.! x;r x;) = g(xll xlx Z‘)
= a’f(zls Ty, 178)
= a(oxf)(xis x3, Tg)-
This equation must hold for any point (z}, z3, #3), hence
Oplaf) = a(Oxf). (A.5-4.1)
(b) Consider two functions f and g and let A = f4-g, then
(Oxf N1, 24, Ty) = [(X), T, Ty)
(Ogg)(m1, x5, %3) = g1, 23, 23)
O.[f(il:;, -’t;, ;t{,)+g(.1:{, x;’ z;)]
= (Ogh)(z1, 23, 23) = h(zy, 23, Tp)
= (%1, Ta, T3) + (1, Ta, Z3)
= (Ogf (=1, z3, 23)+ (0 g@)21, %3, T3)-
Since this equation holds for any point zj, ¥, 23, we find

Op(f+9) = (Opf)+(Oxg). (A.5-4.2)

{2) Let R transform the point (x,, 3, %,) to (%}, 231, x3), S the point (z}, 3, 3)
to (x}, x5, z3) and T(= SR) the point (z,, 2, 24} to (], Z3, ¥3). Then, if f
and g are functions belonging to the function space,

(Orf)a1, 23, z3) = f(xy, %4, x3) (A.6-4.3)

(Osg)(*, 3, x5) = g{=}, 3, 73)- (A.5-4.4)
Now let g = Ogf, then

gy, 23, x3) = (Opf)(x1, 23, x3) = (X1, 2, 73)

and therefore, going back to eqn (A.6-4.4),

and

and

(OsOxf)(z], x5, x3) = [ (21, 24, Z3).
Comparing this last equation with eqn (A.5-4.3), we have the desired result

0:;0.f = 0rf. (A.5-4.5)
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A. 5-B. Proof that the matrices derived from 0 form a representation
of the point group

W.e must show that, if T = SR (or, equivalently, Oy = OgOp, soe the
previous appendix), then D(T) = D(S)D(R).

Oty =3 DuR),
Ost, = 3 DS,
O:f, = 3 Du(Tf,
Orfy = Ouafy = 05(041) = 05 3 0,001
- é:l D,(R)Osf,) (Osislinear, see the previous appendix)

=Soamf3 D))
=1 =1
That is, .im
0:f,—3 { EIDu(S)Du(R)}ff

fun

therefore,
ka( T) = ’ZID“(S)D”(R)

which is the matrix multiplication rule, therefore D(T) = D(S)D{(R), the
desired result.

PROBLEMS
5.1. Consider the following planar symmetric figure.

{a) Determine the distinct symmetry operations which take it into itself;
construct the group multiplication table for these operations, and
identify the point group to which this figure belongs.

(b) Find a set of two-dimensional matrices which are in one-to-one corre-
spondence with the above symmetry operations, and verify that they
have the same group multiplication table as the symmetry operations.

5.2. The table below gives the effects of the transformation operators Og for
the symmetry operations R of the point group 2, on four functions f,, f;, fy.
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and f,. Construct a four-dimensional representation of 9,.

R = I E C, C: (2 C;a C;b C:a C;b
N1 N Js Ja Ja -S4 1Y = —
1] fs fa f1 f| 'fa —f1 "‘fl “‘f.
.fs fs f¢ fl f:l —f: —fc “f: _fi.
Ja Je 5 Ja fs = /Y —fa =/

5.3. Consider a set of base vectors located on the nuclei of the molecule 80, as
in the figure below (e, €,, €, are perpendicular to the page).

Construct a nine-dimensicnal matrix representation for the point group to
which 80, belongs.
5.4. For the point group @y),:
(@) construct a three-dimensional matrix representation using three real
p-orbitals as basis functions,
(b) construct a five-dimensional matrix representation using five real d-
orbitals as basis functions.
5.5. Consider the planar trivinylmethyl radical with seven s-orbitals located as
shown below:

Using these n-orbitals as basis functions, construct a seven-dimensional
repregentation of the €, point group.

6. Equivalent and reducible
representations

6-1. Introduction

HAvING spent a considerable effort in creating many different matrix
representations for the point groups we now, ironic as it may seem,
devote an equal effort to eliminating many of them from further
consideration. We do this in two ways.

In the first place, we consider those representations which are
produced by the same transformation operators O, and the same
function space but with different. choices of basis functions describing
that space to be eguivalent. We will see that any pair of such egutvalent
representations have corresponding matrices which are linked by a
similarity transformation (see § 4-5). As it will always be possible to
find a set of basis functions which produce unitary matrices (a unitary
represeniation), convenience dictates that we choose such a set for
producing a representation which is typical of the other equivalent
ones.

In the second place, we restrict our discussion to those representations
which are composed of matrices which cannot be simultaneously broken
down (reduced) by a similarity transformation into block form (e.g.
the matrices in § 5-9). It will be for these irreducible representations
that (in the next chapter) we will be able to prove a number of far
reaching theorems, one of the most important of which is the theorem
that the number of non-equivalent irreducible representations is equal
to the number of classes in the point group. So that, for example, for
the point group €,,, which has three classes, rather than dealing with
an infinite number of representations we will have only the three
which are non-equivalent and irreducible to worry about. Also in the
next chapter we will show how to obtain, with the least amount of
work, the essential information concerning the non-equivalent ir-
reducible representations which exist for any point group.

Irreducible representations are important to the chemist since they
provide directly a great deal of information about the nature of vi-
brational and electronic wavefunctions.

6-2. Equivalent representations
Let us consider a particular n-dimensional function space, that is
one which requires » linearly-independent basis Junctions to specify any
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function belonging to it. There will be many possible different sets of
linearly-independent functions which can act as a basis for this space
but we will take just the following two:

JoSa o fa

1> 92y --- Ia
e.g. if we were considering the d-orbital function space, the basis
functions could be a set of five real d-orbitals or a set of five complex
d-orbitals, the latter being just combinations of the former (and vice
versa) and both could be used to define any function belonging to the

d-orbital space.
Since the g functions are a basis for the space, any f function can be
written as a linear combination of g functions:

5 ={ZIA;.9; k=12, ..n (6-2.1)

(note the subscripting on the coefficient 4,,), and any g function can be
written as a linear combination of f functions:

g = ‘leuf« J=12 ..m (6-2.2)

We can combine eqns (6-2.1) and (8-2.2) together to give

Ja =5§‘i‘4n(¢.§1 Bufi) = ‘é(i BUA!k)fi

Jml

and since the f’s are linearly independent, this equation implies that

;IB wdap =0, (6-2.3)

since then:

fo=3Z 0l = fo

The left hand side of eqn (6-2.3) is the element in the sth row and kth
column of the matrix formed by multiplying matrix B (composed of
the elements B,,) by matrix 4 (composed of the elements A,), the
right hand side is the i, k element of the identity matrix E, hence

BA = E.

We can also write

g = Z Biffi = z BH(ZA.HQE) = z (‘2 AuBu)g'.
faml =1 k=1 =1

k=1
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and
hid k=1,2,..
ZAMBU == "u "
=1 i=1.2..n
and obtain AB — E
Therefore the matrices 4 and B are related to each other in the
fi i :
ollowing way B — 4 (6-2.4)
and 4 = B

Now let us consider the transformation operator O, (corresponding
to the symmetry operation R) which is defined by the equation which
we have had before:

Olf(xi! x;! 2:;) = .f(xv X3, za) (6-25)

where 2,, z,, x, and z,, =3, z, are the Cartesian coordinates of a point
before and after the application of R, respectively. Let us assume that
O, in conjunction with our chosen function space produces matrices
which represent O, and R, i.e.

Opfi = éD’;‘(R)fk (6-2.6)
or -
Ogy; =g.; Diy(R)g,. (6-2.7)

The coefficients D],(R) will form the matrix I’(R) which represents R
in the f basis and the coefficients Dj,(R) will form the matrix D*(R)
which represents R in the g basis.

We can readily obtain an alternative equation to eqn (6-2.7) in the
following way:

Ogg, = O, (‘g B,,f, i)

(from eqn (8-2.2))

= 2 Bu(0xf) (Oy is linear)
= é_‘l B,,( é,D“‘R’f») (from eqn (6-2.8))
= g’: B.;;D{f(R) (é Az.yi) (from eqn (6-2.1))
=3 (3, 5 4uliR)B)0.
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Comparing this result with eqn (6-2.7) and recalling the rule for the
product of three matrices eqn (4-3.68), we have:

Di(R) = 3 3 4uDI(R)B,

or D*(R) = AD'(R)B
or, since 4 = B, D#(R) = BD/(R)B (6-2.8)
or D!(R) = A-1D(R)A. (6-2.9)

Consequently, the matrices in the g basis representation are related to
those in the f basis representation simply by a similarity transfor-
mation (see § 4-5); the two representations are said to be equivalent.

It is clear that & change of basis for a given function space does not
affect the multiplication rules, i.e. if

D/(SR) = D!(S)D/(R)
then D%(SR) = B-'D/(SR)B
= B\ D/(S)D'(R)B
= BI/(8)BB-1D(R)B
= D*(S)D*(R).
To summarize, the different sets of matrices that can be used to
represent the operators O, in a given space are different realizations of

what is really the same representation. Two representations of a point
group are equivalent if matrices B and B-! exist for which

D¥(R) = BAD/(R)B

for every operation R of the point group. Conversely, making the
same similarity transformation on all matrices of a given representation
is equivalent to simply changing the basis of the chosen function space.

6-3. An example of equivalent representations

As an example of equivalent representations, we will consider the
p-orbital function space. This space may be described by three real
p-orbitals: p;, p;, ps (commonly written as p,, p,. p,) and we will call
this the f basis. Alternatively, we may take three complex p-orbitals:
P1» P1: Py (commonly written as p,, p_y, p,) and we will call this the g
basis. These two sets of functions are related by the equations:

P = (Pi+Pa)/v2 P1 = (p1+ips)/+/2
Ps = —i(p—pa)fv/2 Pi = (P—ipa)//2
Ps = Ps Ps =Ps
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hence, using the notation of the previous section

1/4/2 —ifv/2 0 1/v/2 1j4/2 0
A4 =|1/v2 vz of B=|ivez —ilv2 0
0 0o 1 0 0o 1

and it can be verified that the equation AB = ¥ is obeyed.
The three real p-orbitals may be written in terms of a set of Cartesian
coordinates z;, «,, and z; as

P = F(r)x,
Pa = F(r)x,
Ps = F(r)z,

where F(r) is a function of the radial distance r, and is common to all
three orbitals. If O, is the transformation operator which corresponds
to a clockwise rotation by an angle § about the e, axis (which defines
the coordinate ;) and if this rotation takes the point at z,, z,, z, to
x,, T3, Ty, then (see egn (5-2.5))
x; = (cos 0)z, +(sin f)x,
x3 = —(sin 6)x, +(cos 8)x,
Z3 = &,
or, taking the inverse
x, = (cos f)x; —(sin B)x;
xy = (sin O)z]+(cos 6)z;

Ty = 3.
Hence
Oopi(27, Ta, T3) = Pal®ys Z50 T3) (definition of O)
= F(r)z,
= F(r){(cos O)z; —(sin G)z;}
= (008 0)p,(z1, 23, 3} —(8in O)ps(z;, 23, 23)
or, O,p; = (cos G)p; —(sin 6)p,

and by carrying out similar steps for p, and p,;, we obtain

3
O, = 3 Do), k=123

where cos@ sinf O
Do) = || —sin® cosd of. (6-3.1)
0 0 1
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The matrix which corresponds to 1’(0) in the equivalent repre-
sentation using the g basis py, pq, Py, D?(8), is given by

D#(6) — B-D!(0)B — AD'()B
1/4/2 —ify/2 Of| cos® sin6 O|]1/v/2 1/v/2 0
={1/v2 vz of|| —sin6 cos6 ofli/vz —ifv2 o
0 0 1 0 0 1 0 0 1
1/4/2 —if/2 Oflle?/v/2 e ¥/\/2 0
—l|vve iive ofllieyvz —ie 2 o

0 ] 1 0 0 1
e 0 0
=10 e of. (6-3.2)
o 0 1

Or, alternatively, we may obtain this same matrix by considering
O4pi(xi, Z3, ¥3) = Pil(®1, Ta, ) k=1,2,3

and carrying out the same steps for the complex basis functions p;, p;,
P; a8 we did for the real basis functions p,, ps, ps.

In Table 6-3.1 we show the matrices for all of the operations of the
€sv point group using both real and complex p-orbitals as basis func-
tions. For the operations C; and C; we have simply replaced 6 by 27/3
and 4#/3 respectively in both egn (6-3.1) and eqn (8-3.2), The matrices
for the reflection operations have been obtained in a faghion gimilar to
that used for the rotations. In carrying out these steps it has been
assumed that p,, p,, and p, lie along the vectors e,, e,, and e,, respec-
tively (see Fig. 5-3.1). For obvious reasons the matrix representation
in the real basis is identical to the one given in § 5-3(2) and, further,
the reader may verify for himself that the matrices using the complex
basis obey the ¥,y group table (Table 3-4.1).

6-4. Unitary representations

If we have a number of equivalent representations of a particular
point group, it is useful to choose just one of them as a prototype for
all the others. It makes sense that the one we choose for this role has
matrices which are unitary, since unitary matrices are much easier to
handle and manipulate than non-unitary matrices. The reader will
recall (Appendix A.4-1(g)) that a unitary matrix is defined by A2 = 4",
Just as there are two ways of interpreting equivalent representations
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TABLE 6-3.1
Equivalent representations of €,, using the p-orbital
Junction spacet

Operation Real basis Complex basis
E 1 0 0O 1 0 0
01 0‘ ¢ 1 0
c 0 1 0 01
C, —6 8 0 s 0 O
’ —a —o 0 ) 0 &* O ‘
0 (1] 1 o 0 1
c —c —a 0 e* 0 O
' s —o 0‘ (1} e O
0 1 ] o1
ay -1 0 0 0 —~1 0
o 1 0 ’ —1 0 0 ’
0 0 1 (1] V] 1
oy ] —a 0 0 —&* 0
' —s —c 0 l —8 0 0 '
0 0 1 0 0 1
oy c 8 O 0 —& 0
a —e 0 —g* 0 0
0 0 1 ¢ [} 1

t ¢ = cos(n/3) = 4, 8 = sin(n/3) — V'3/2, ¢ = exp(2~if3).

(change of basis functions or a similarity transformation on the
matrices), so there are two ways of proving that it is always possible
to find a unitary representation which is equivalent to any given repre-
sentation.

1f we choose our basis functions for a particular function space to be
orthonormal (orthogonal and normalized) i.e. (f;, f;) = § f7f, dr = 8,,,
then, since the transformation operators are unitary (§5-7), the
representation created will consist of unitary matrices. This is proved in
Appendix A.6-1. It should be stated that it is always possible to find
an orthonormal basis and one way, the Schmidt orthogonalization
process, is given in Appendix A.6-2.

Alternatively, we can prove that there is always a similarity trans-
formation which will transform simultaneously all of the matrices of a
representation into unitary matrices. This is proved in Appendix A.6-3.

From now on therefore it will be no restriction to consider, if we wish
to, only unitary representations.
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6-5. Reducible reprasantations

It is convenient at thias stage to introduce the symbol commonly
used for a matrix representation, namely I'. Different representations
for a point group can then be distinguished by a superscript on this
symbol, for example the representation in the f basis in § 6-2 could be
symbolized by I'Y and that in the g basis by I'?. It is important to
understand that I" is not a symbol for a single matrix but for the whole
set of matrices which constitute the representation.

Suppose that I’ is an n-dimensional representation of a group of
transformation operators O, acting on the functions of an %n-dimen-
sional function space and that we have basis functions fi, fu.... fa
with the property that the first m (m < n) are transformed among
themselvea for ali O, (e.g. in § 6-3, the p-orbitals p, and p, were
transformed among themselves by all O, and 8o m — 2 for this case):

Ozfy = Dy(R)fi+... Do for 40 frn +--. 0.1,

Olfm = Dlm(R)fl'l'"’ Dmmfm+0'fm+l+'“ O-fn'
The matrices will then all take the form:

R
D(R) = DRy 19 u (6-5.1)

[01 DXR)

where DY(R) is a m xm block of elements, D¥R) is a (n—m) x(n —m)
block of elements, [Q] is & m % (n —m) block of elements and [0] stands

for a (n—m) xm block of zeros.
If the bagis f;, f ... f, is chosen to be orthonormal, then the matrices

D(R) will be unitary [D(R)~! = D{R)"] and since
D(R-YD(R) — D(RIR) — D(E) — E

we have D(R_") —_ D(R)—l (6-5.2)
— D(RY
— DI(R)T (0] . (6-5.3)
Q)Y D¥R)

As R—! is one of the operations of the point group, D(R~') must also
have the form of eqn (8-5.1) and consequently, comparing eqns (6-5.1)
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and (6-5.3), [Q] must be zero and
DYR) [0] ”
0] DR

When D(R) is of block form like this, it is said to be fully reducible.

If there is a similarity transformation (or, what is the same thing,
& change of basis) such that all the matrices in some representation T’
are brought into identical block form, then I' is said to be a reductble
representation. If there is not, then T is said to be an trreducible repre-
sentation.

As we have stated before (eqn (5-9.7)), the lower dimensional matrices
formed from the blocks can themselves form a representation of the
point group. If, for example, D(R) are matrices for the representation
I’ and if a matrix 4 exists such that

DYR) [0]  [0]

A'D(R)A = || [0 DYR) [0] | forall R,
[0] (0] D¥R)

where [0] stands for rectangular arrays of zeros, then the matrices
DYR), D} R), and D3(R) form, if they are different and non-equivalent,
three new and different representations I', I'?, and T'8 for the point
group. We write this symbolically as:

r=ltelerl:
This equation is a highly abbreviated version of what we have just
done and must be interpreted with care. The symbol @ does nof mean
addition and the equation should be read as: ‘the representation I" can
be reduced through a similarity transformation to three representations
I, I', and s’

It is usual to take any reduction that can be carried out as far as
possible, that is to reduce I' to irreducible representations. Quite often
the same or an equivalent irreducible representation will occur more
than once, we will then write

I' =a,I" @ a,I...
=3Ya,lI" (8-5.5)

D(R) = (6-5.4)

where a, is the number of times I'" or its equivalent occurs in I" and the
I'" are non-equivalent and irreducible representations.

Consider the &,, point group and the transformation operators O,
for the d-orbital function space. If we do not choose our five linearly-
independent basis functions for this space with any particular care, we
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will produce a five-dimensional representation I" for ¥,,, the matrices
of which are not in block form. If, however, we carry out the similarity
transformation on each matrix which corresponds to changing the
basis functions to those of § 5-9, we will obtain the matrices of eqns
(5-9.1) to (5-9.6), which are in the same block form and I" will have been

TaBLE 6-6.1

The non-equivalent irreducible represeniations for €,
uaing the d-orbital function space

R mn I
2o |I‘ “||
o1
C 1 -‘/3"2
* vslz
- X ’ ,,/3/2 l
vs;z
“ || |
0 -1
o’ 1 V3R
v \/3/2
M Va/z

reduced to two two-dimensional representations and one one-dimen-
sional representation. Another change of basis functions (in fact, simply
interchanging d, and d,, i.e. writing d, = z,z; and d, = 2,z,) shows
that these two two-dimensional representations are equivalent. Clearly
the one-dimensional representation is irreducible and, though we have
not proved it, so are the two-dimensional ones. We can therefore write

FP=Me2I

where I'' and I'? are given in Table 6-5.1.

Qur next task is to discover the relationship between the matrix
elements of non-equivalent irreducible representations, the restrictions
on the number of such representations, simple criteria for testing for
irreducibility and a method for readily carrying out the reduction of a
reducible representation.
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Appendices

A.B-1. Proof that the transformation operators 0
will prodiics a unitary representation if orthonormal
basis functions are used

If an n-dimensional space is characterized by the n orthonorma! basis
funections f,, f,,... f,, then, by definition, the scalar product is

(fbf;) =ff¢'f; dr = d‘; ; i i, g,...,ﬂ

In §5-7 we showed that the transformation operators Ogr are unitary
therefore

(Oxfn Onf;) =f(ojrf:)'(onf1) dr = (f, fs)
and hence .
-[(Olfi)*(olfi) dr = 4, ;: 11

Coupling this equation with eqn (6-2.6) and omitting the superscript f on the
madtrices, we obtain

b = [(E2irrn) (3 Dtmrz) or

=3 3 D(R)*D(R) J' 12, dr

k=1t=1

=23 3 Dy(R)*D,(R) 8,,

kw=1i=1
= Z Dy(R)*D,,(R).

=1
From consideration of the formula for the product of two matrices, it is
spparent that the above relationship leads to

DR D(R) =

or
D(R)y™ = D(R)'.

Hence, in an orthonormal basis the matrices D{R) which represent unitary
operators Oy are all unitary.

A.8-2. The Schmidt orthogonalization procass
Consider the set of linearly-independent functions ;, y,,... ¥, where

Gy oyt a,p, =0
only if @, = a; = ... @, = 0. The scalar product is defined by

(v ) =f vy, dr
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[see §5-5(4)]. Then the functions ¢,, ¢,,... ¢, defined by the following
equations will be orthogonal:

$1 =1 i )
_ . ‘P ¥
s = Y2 (951- ¢1) ¢’1
_ _(951' ¥s) _(¢:n ¥s)
B e b0 P T (b )
95" - w”_“&l' 'Pn)‘#l — (¢n—l! wn) ‘ﬁn—l

(¢l! ¢1) (¢n—1: ¢n—1)

—1

S (B0 va)

Va— 45‘ Y ¢ .
=1 (¢‘v ¢¢)

To prove that these functions are orthogonal we must first show that
these definitions have meaning, i.e. we must verify that each ¢, 7= 0. This
is done by induction. We clearly have ¢, 7= 0. Assume that, for some & > 2,
&1, $s --- ¢i_, are all non-zero, then the definition of ¢, is significant sinee
we recognize that ¢, can be written as a linear combination of y,, ¥,,... ¥,
in which 4, has the coefficient 1 and the y,, ¥s,... ¥, are linearly independent.

It follows that ¢, £ 0. Thus ¢, £ 0,..., ¢, % 0.
We next show, again by induction, that ¢,, ... ¢, form an orthogonal set.
Asgsume that for some k > 2, ¢,,... ¢, _, form an orthogonal set. Now

_ _‘_l (do wu)
b= ¥ 421 (0 ¢f)¢i

and therefore, forming the scalar product (¢,, $#;) where 1 < j < ¥, we

obtain -1
(bys d) = (S 1) — X M(?sp ¢
=1 (¢h ¢f)

)_(‘35{- 'pk)(qf-,, $,)=0.

(¢ 8y

Thus ¢;,... ¢ form an orthogonal set and by induction so do ¢,,... ¢,.
A normalized set of functions can be formed from the ¢’s by taking:

= (‘ﬁ:v Yu

b
{ S »
NACIRH)
so that finally (y,, ;) = &, and y,,... ¥, form an orthonormal set.
It is also true that for a general vector space any set of linearly-independent
vectors can be combined in analogous fashion to give a set of orthonormal
vectors. In this case the scalar product is defined by

(r, 8) = rs cos 0 (see § 5-6(4), (5)).
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A.6-3. Proof that any representation is equivalent,
through a similarity transformation, to a unitary
reprossntation

To prove this, we first construct the matrix
H =3 D(R)D(R)', (A.6.3.1)
x

that is we form a new matrix by adding together the matrices obtained by
multiplying each D(R) by its adjoint D(R)' where IXR) is the matrix
representing the symmetry operation R or the transformation operator Op.
The sum in eqn (A.8-3.1) is over all the operations R of the point group.
Each product D(R)D(R)" is Hermitian (see Problem 4.5) and hence the sum
of them H is also Hermitian. Because of this fact H can be diagonalized by a
unitary transformation (see § 4-5)
X =UHU (A.8-3.2)
where X is diagonal and U is unitary.
If we define new matrices, equivalent to D(R), as

D'(R) = U'D(R)U, (A.6-3.3)

then it can be shown by the usual matrix manipulations, that the adjoints
(R

of the D'(R) are D(R)' = U D(R)'D.
We can now obtain X — U-HU

= ; U'D(R)D(R)'U
= ; U'D(RUUD(R)'U
= ; D'(R)D'(R).
If we consider a typical diagonal element of X, we have:
Xy= ;’Z D;(R)D,(R)*

and we see that not only is X diagonal but that it has only real positive
elements.

We can therefore find the square root of X, X, simply by taking the
square root of each diagonal element: (X¥), = (X,)}, the off-diagonal
elements of X# will, of course, be zero. Also, since X4 is disgonal and real

4 (xht = xit
e (x4t = x-1
Now we define the matrices D*(R), equivalent to both D(R) and D’(R),
th i
by the equations D’(R) = X-tD/(R)XE. (A.8-3.4)

It can be shown that the adjoints of these matrices are
D(R)' = XtD/(R)' X1,
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‘We can prove that the matrices D*(R) are all unitary. Consider the particu-
lar operation §, then
DS D'(S) = X dp(S)Xixtp(syt x4
= XIp/(S)U'HUD(SY X1
= Xx-tp($)U* T D(RDR)'UD(S)' X+
F ]

=X3dp(s) ; UD(RYUUDRUD(S)' X1
= X-ip/s) ; D'(RYD'(RY'D'(S)TX ¥
= X# ; D(S)D'(R)[D'(S)D'(R)T X

If SR == T, then I}(S)D(R) = D(T), see Appendix A.5-5,andsincetheprimed
matrices are obtained through a similarity transformation, they are equiva-
lent to the unprimed ones and we have D’'(S)D’'(R) = D’(T). Furthermore,
by the Rearrangement Theorem (Appendix A.3-1), as R runs over the
symmetry operations of the point group, so does SR(= T). Hence

D(S)D"(S)t = X+ ; D(T)D(T)' Xt
= X3 U DU UDT)tux+
T
= Xty ; DTp(Ttux-t

= Xty gux+
= xtxx-4
= K.
The matrices D"{R) are therefore unitary and the similarity transformation
which produces them is (combining eqns (A.6-3.3) and (A.6-3.4))
D'(R) = ZT'D(R)Z (A.6-3.5)
where Z = UX?% and U and X are defined by eqn (A.6-3.2).%

1 The reader will have noticed that in determining X# we have written (X1),, = (X M
rather than (Xt),, = — (X, )¥ which is equally valid. By doing so we have merely
chosen from the several square roots of X the one which is called the positive square

root.

1. Irreducible representations
and character tables

7-1. Introduction

SINCE it is the non-equivalent irreducible representations which
reflect the essence of a point group, it is upon these which we now focus
our attention. Others which are equivalent or can through a similarity
transformation be reduced to these are, in a certain sense, superfluous:
they contain no new information about the point group and we can
safely ignore them.

In this chapter we introduce a theorem which is central to the use
we make of irreducible representations in solving quantum mechanical
problems. This theorem is called the Great Orthogonality Theorem or
the Key Theorem in Representation Theory ; both of these names give
an indication of the theorem’s importance. What it does is to show the
relationships which exist between the matrix elements of the non-
equivalent irreducible representations. Though the proof of this
theorem is fairly complicated, it has an elegance and beauty, the
discovery of which is the reward for those who master it. The impli-
cations of the theorem are many and include such things as the fact
that the number of irreducible representations is less than or equal to
the number of classes in the point group, and that for a given point
group the possible dimensions of its irreducible representations are
restricted. 1t also leads to a formula for the number of times a given
irredueible representation occurs in a reducible representation.

We introduce in this chapter the word ‘character’. A character is
the trace (sum of the diagonal elements) of any matrix which is a part
of a representation of a point group. Many of the properties of a point
group can be deduced from the characters of its irreducible repre-
sentations alone rather than from the matrices themselves; this greatly
simplifies things. Furthermore, the Great Orthogonality Thecrem leads
to rules which allow us to construct tables of characters of the ir-
reducible representations without explicitly knowing the matrices.

We end this chapter with an example of the determination of the
irreducible representations produced by certain basis functions using
the rules and theorems which we have developed. It is at this point
that we are ready, at last, to produce results of genuine chemical
interest from the sole knowledge of the point group to which a molecule
belongs.
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7-2. The Great Orthogonality Theorsm

This theorem states that if I'* and IV are two non-equivalent ir-
reducible representations with matrices D*(R) and D"(R) (of dimensions
n, and =,, respectively) for each operation R of the group & then the
matrix elements are related by the equation

; Di(R)Dy(R™) = (9/n,)8,,8,0sms (7-2.1)

where g is the order of the group and the sum is over all of the oper-
ations R. The proof is given in Appendix A.7-1.

If we assume that the irreducible representations are unitary, and
we can do this without any loss of generality (see § 6-4), then

D(R-Y) = D'(R)* = D'(R)'
and eqn (7-2.1) becomes:
g Di(R)Dim(R)* = (g/n,)8,,0:,0xm. (7-2.2)
For a given unitary irreducible representation I'* there will be n,

matrix elements corresponding to each R. If the operations are
R = R,, R,, ... R,, then the g matrix elements of a chosen s and j value,

Dy(Ry), Dy(Ry), -.- DY(R,)

can be considered to be the components of a g-dimensional vector.
Since there are n} such sets of matrix elements (corresponding to
i=1,2..n,andj = 1,2, ... n,), there will be n} such g-dimensional
vectors for each irreducible representation. Eqn (7-2.2) shows that the
vectors from a given unitary irreducible representation are orthogonal
to one another and to the vectors formed in a similar way from any
other non-equivalent unitary irreducible representation. This is
because, as the reader will recall (Section 5-5(5)), two vectors

P = z,8,-}2.8,... €,

P’ = zie,txe,...t2,e,
are said to be orthogonal if

(P,p") = 2,2 +2525... + 2,7, = 0
or, if the vectors are complex, if
(P,P') = 22 1* +z2* ... +a 2t = 0.

Eqn (7-2.2) with 4 # v or ¢+ # j or k 7 m is of the same form as this
last equation.
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Now, the maximum number of g-dimensional vectors which can be
orthogonal is g. Consider, for example, a two-dimensional vector space
containing the two orthogenal vectors:

P = x,8, 0,
P’ = zie, +z€,
2 Lyt =
or xrx +atry = 0. (7-2.3)

If there were a third vector

where

P = zie;tzze,

orthogonal to p and p’, then
2 ¥ txx* =0
and iy ¥ +xma* = 0.

Solving these last two equations we get:

and 2. 2z
2 a
Ty )
or, since by eqgn (7-2.3) 2 2*
2 1
z
and ,
&, z3
z,  xr'
we have * 2, 2
2 W ) P Ti+Zz) .,
—+—jr* = 5 z* =0
s o) 1%y
and * 2
Ty T\ , zat+21\
(—' ‘+—‘-;)xg* == ( > zg* = 0.
X1 %2 1%

Since 2} +; # 0, we have z]* — z]* = 0 or ] =z, = 0 and hence a
two dimensional vector orthogonal to p and p’ cannot exist. By
extension, this is generally true i.e. the maximum number of orthogonal
g-dimensional vectors is g.

We therefore have the following result:

gn: < ¢, (7-2.4)
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that is: the sum over all of the non-equivalent irreducible represent-
ations of the square of the dimensions of the representations is leas than
or equal to the order of the group g. This result places restrictions on
both the number and size of the irreducible representations of a group.
In Appendix A.7-2 we show that, in fact, the equality holds i.e.

r
2 n =g
=]l
where r is the number of non-equivalent irreducible representations.

7-3. Characters
The trace of a matrix is the sum of its diagonal elements:
Trace(d) = > A,,.
{

The trace of a matrix which represents an element of a group {or an
operation of a point group) is called a character and is usually given
the symbol y. x(R) is thus the character of the operation R in the
representation which has matrices D(R), i.e.

2(R) = Trace{I(R)},
and if we are considering the representation I'*, then we write

r"(R) = Trace{D*(R)}.
The complete set of characters for a given representation for the
elements of a group is called the character of the representation. The
characters of the two representations introduced in Table 6-3.1 are
sahown in Table 7-3.1.

We have already seen (eqn (4-5.4)) that the traces of two matrices
which are related by a similarity transformation are identical. Since
equivalent representations have matrices which are linked by a
common similarity transformation, the characters of two equivalent

TaBLE 7-3.1
Characters of the representations given in Table 6-3.1

R z(R) z(R)t
(real basis)  (complexr basis)
E 3 3
C, [V} 0
o4 0 0
ay 1 1
oy 1 1
ay 1 1

1 In the construotion of this set of characters, the fact that
e+¢* = —1 haas been used, s — exp(2#i/3).
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representations will be identical; this is borne out by Table 7-3.1.
The reverse proposition: that if the characters of two representations
are identical, then the representations are mecessarily equivalent, will
be proved in the next section.
If two operations P and Q of a point group are linked by a third
operation X of the point group by the relation
P = X10QX, (7-3.1)

then P and Q are conjugate to each other and are said to belong to the
same class (see §3-5). If D(P), D(Q), D(X), and I{(X~?) are the
matrices in some representation of the point group representing the
operations P, Q, X, and X3, then necessarily these matrices must
mirror egn (7-3.1), i.e.:

D(P) = D(X)D(Q)D(X). (7-3.2)
Since X-1X = E,

DIX-)I(X) = DE) = E
and DX = D(X),
then: D(P) = D(X)"'D(Q)D(X)

and D(P) and D(Q) are related by a similarity transformation. From
this we see that the characters of operations belonging to the same
class are identical, i.e. if P — X-10X

then 2(P) = 2(Q).
This result, too, is borne out by Table 7-3.1, where, for the %,, point
group E forms one class, C; and C? form another, and o, oy, and o7
form a third.

From eqn (7-2.1) (the Great Orthogonality Theorem) we can obtain
for the non-equivalent irreducible representations I'* and I'":

; DH(R)DI(R™Y) = (g/"u)dnvéitéﬁ = (g/”a)axv"u

and if we sum over ¢ and j, we get:
[ ny ny ny
> Y Di{R) 3 DR = (g/m)du 2. 3. 9y
R =1 F1 =] fml

and g 2" (R)x"(RY) = (g9/n,)0,m, = ¢8,,. (7-3.3)

If the irreducible representations I'" and I'" are chosen to be unitary
(no loss of generality), then eqn (7-3.3) becomes

2.3 " (R)"(R)* = gd,, (7-3.4)
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since

£(R) = 3 DR = 3 DR = £(R)*
for unitary matrices. If the operations of the group are
R.,R,,.. R,
we can interpret the characters
2(Ry), Y (Ra),... 2 (Ry)

ag the components of a g-dimensional vector and eqn (7-3.4) then
implies that such vectors for different non-equivalent unitary ir-
reducible representations are orthogonal.

We will collectively symbolize the operations of the ith class of a
point group ¢ of order g by C; and we will symbolize the number of
operations in the sth class by g, and the number of classes in the
group by %, so that ®

£§19( =4g.
For example, for the ¥,, point group we will write:
C, = E,
C; = C, or C},
C; =0, or o] or o},
=1,
gs = 2,
gs = 9,
g==6,
k=3,

Since the characters of the operations of the same class are identical,
we can write eqn (7-3.4) as:

x
Z9X(CI(C)* =gd,, (7-3.5)

where the sum now runs over the different classes and x*(C,) is the
character of any operation in the ith class in the I'* irreducible repre-
sentation.

Rearranging eqn (7-3.5) as

3
?3.. {gtr"(CoMadr"(CH* = g8, (7-3.6)
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we see that the numbers
gir*(Cs), gdx*(Ca),. .. 9E2*(Ch)

can be interpreted as the components of a k-dimensional vector and
that similar vectors from the other irreducible representations will be
orthogonal to it. Since the maximum number of orthogenal k-dimen-
sional vectors is k, the maximum number of non-equivalent irreducible
representations must also be %, so that if r is the total number of
non-equivalent irreducible representations, then

r<k. (7-3.7)

In fact we can show (Appendix A.7-3) that it is the equality which
holds.

7-4. Number of times an irreducible representation
occurs in a reducible one
Consider the reducible representation I**?: we can write (see eqn
(6-5.5)) x
rd —gNtoete..aq,l"a..al"=3aqal"
v=L

where I'” is the »th irreducible representation, @, is the number of
times I'” appears in I'™ and % is the number of classes in the point
group (the number of irreducible representations equals k, see Ap-
pendix A.7-3). The characters of the matrices belonging to =4, /*4R),
are the same as the characters of the matrices in their reduced form
gince only a similarity transformation has been carried out for each
one. But the sum of the diagonal elements of the matrices in their
reduced form is simply the sum of the diagonal elements of the ir-
reducible matrices y"(R) which occur, multiplied by the number of
times that they occur. Consequently, we have

£4R) = "_2‘ a,r’(R) (7-4.1)

for each R, where z"(R) is the character of R in the I irreducible
representation.

If we multiply eqn (7-4.1) on both sides by x*(R)*, the conjugate
complex of the character of R in the I'* irreducible representation, and
sum over all operations R of the point group, we obtain, by using eqn
(7-3.4),

k k
g YR (R)* = 2: VZ; a " (R)y"(R)* = Z.a.ga..v = g4,
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Therefore, R
a, =g 3 x™(R)"(R)* =g Zly.-x""(Cdx“(Cf)* (7-4.2)
F 3 o

where C, denotes any operation of the ith class and g, is the number of
operations in the ith class. Eqn (7-4.2) is an extremely useful formula,
which can be easily applied {provided the appropriate characters are
available), for determining the number of times a, that the I* ir-
reducible representation occurs in the I**? reducible representation.

We are now in a position to show that two representations with a
one-to-one correspondence in characters for each operation, are
necessarily equivalent (see § 7-3). If we consider two different non-
equivalent irreducible representations then, since the characters are
orthogonal (eqn (7-3.4)), there cannot be a one-to-one correspondence.
If we consider two different reducible representations I"* and I'* then,
by eqn (7-4.2), if the characters are the same, the reduction will also
be the same, that is the number of times I’ oceurs in I'* {e,) will, by
the formula, be the same as the number of times I'” cccurs in I'®. The
reduced matrices can therefore be brought to the same form by re-
ordering the basis functions of either I'* or I"*. The reduced matrices
are therefore equivalent and necessarily I'* and I'* from whence the
reduced matrices came (via a similarity transformation) must also be
equivalent. Hence, we have proved our proposition.

7-5. Criterion for irreducibility

From eqns (7-4.1) and (7-3.4) we can discover a gimple condition for
a representation to be irreducible. Consider the representation I'*, we
can write its characters as

2R = 3 a*(R) (1-6.1)
=1

and multiplying both sides by x*(R)* and summing over all the oper-
ations R of the point group, we obtain:

3 rRRe =3[ e @) 3 err)]

= é} iana.{}; x“(R)x'(R)"‘}
k x

= E Za#avgd#v

el vyl
2 2
=g Y a,.
B=1

(Note that the numbers e, are necessarily real, i.e. ¢, = ay.)
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Now, if I'® is irreducible, inspection of eqn (7-5.1) shows that all the
@, are zero except for one which is unity, this one corresponding to the
particular irreducible representation which is identical with I'*, So, if
I'* is irreducible, the characters must satisfy:

; 2(R)(R)* =g¢
or ®
.21 g (Cx(C)* =g (7-5.2)

which gives a simple test of whether a representation is irreducible or
not.

7-6. The reductian of a reducible repressntation
When we come to apply the results we have so far discovered to
quantum mechanical situations, we will find that the application
usually revolves around the reduction of some reducible representation
for the point group concerned. We have already seen how to find out
which irreducible representations appear in the reduction of a reducible
representation, namely if we write
LJ
Pred — z a, Pv,

Vel
]
a, =g g LR (R)* =gt gl g™ CHx(C)*.

Now we ask the parallel question—what is the new choice of basia
functions for the function space (the one which produced I'™) which
will produce matrices in their fully reduced form? Once again we are
looking at the opposite side of the coin whose two faces are a similarity
transformation and a change of basis functions. To answer the question
we have posed, we will invoke the Great Orthogonality Theorem and
carry out a certain amount of straightforward algebra,

Suppose that we have found % different fanction spaces for a given
point group, where & is the number of classes or irreducible repre-
sentations for the point group, and suppose that each function space
provides the basis functions for one of the & irreducible representations.
If the dimension of the »th irreducible representation is #,, there will
be %, orthonormal basis functions describing the sth function space.
We will write these sets of basis functions as

LA S, y=12,... %k
where the superscript on f shows the function apace to which it belongs.
By definition, these functions must obey an equation of the same form

then
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as eqn (5-7.2), that is,
Oxfs = 3 Dy(Rf; I
Pl

and this equation must be satisfied for every operation R of the point
group. Since we will choose the basis functions to be orthonormal, the
matrices D'(R) will be unitary (see § 6-4).

Now let us multiply eqn (7-8.1) by Dj;(R)* and sum over all R.
From eqn (7-2.2) we have

3 DE(R*Oxf; = 3 3 DRI D3RS

=12 ...n,

1,2, ...k (7-6.1)

=3 (9/nu)8,0di0B1efy
Pl

= (9/11,.)6,,,6” e (7-6.2)
and, if we define a new operator PJ; by
Pf; = 3 DI(R)*Oyp (7-6.3)
r
then Pif: = (g/n,)8,,0,.57. (7-6.4)

P!, is an operator which is a definite linear combination of the transfor-
mation operatora O, with coefficients which are related to the matrices
of I'*; it is {for reasons which will be clear later) called a projection
operator. If u = v and ¢ = j, eqn (7-6.4) becomes
Pif; = (g/n)f? (7-6.5)
and Van Vleck has called this equation the basis function generating
machine, gince from one basis function f; the others can be generated.
Furthermore, we can create another projection operator P* by the

equation " y
P* =3 P4 =3 I DLUR)*Op = Ty (R*Op  (7-6.6)
-l =l R F 3

and hence, using eqn (7-6.4),
Py = 3 (@lna)dudafi

or, if u # ¥, PYf1=0 g=12..n,
p=12..k (7-6.7)
v=1,2,..%k
and, if g = v, =1,2,..n
P =Gmafe L1 a (7-6.8)

Any function belonging to the function space which haa been used to
produce I can necessarily be written as some linear combination of
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Jisfas --- fa, and we will denote such a general function by fJ,,. Then
from eqn (7-6.7) if & # » we obtain,

P = PHayfi +ogfit ot f2)
-0 ,u=1,2,...k 7-8
- Yy = l, 2,... k ( ) 9)

and from eqn (7-6.8), if 4 = »
Pt = @/n)ogen # =12,k (7-6.10)

We now see why P* is called a projection operator; it annihilates any
function which does not belong to the uth space and projects out (and
multiplies by g/n,) any function which does.

Let us now consider the n-dimensional reducible representation ™!
which is produced from the function space whose basis functions are
@11 s -+ Gn» and let us assume that in the reduction of I™ no ir-
reducible representation of the point group oecurs more than once.
One way of looking at the reduction is to see it as a change of basis
functions from g¢,, 2, ... g, to

f;!f;.!-“fvll,;--o ;f;rf;l---f;,;--- :f:ll.t:.f::--- :‘_;

where k is the number of irreducible representations. From this it
follows that it must be possible to express the g functions as linear
combinations of all of the f functions:

k n,
g, = 2> enfi §=12,..mn

Ymal el
or as x
9. = >/ s=12,...m
vl
where my
/"' =‘Zc“f‘" g==1,2,...n,
=1

The functions #; (s = 1, 2, ... n) must be functions which belong to
the space which produces I'", since they are simply linear combinations
of the basis functions which define that space. If we choose one of the
irreducible representations, say I'¥, and apply the corresponding
projection operator P* to ¢,, we obtain from eqns (7-6.9) and (7-6.10),

k
Py =3P =Ly 51,20 =12k
v=1 n,
(7-6.11)

Since P” is & linear combination of the operators Op, and O,g, is &
known linear combination of g,, gy, ... ¢,, P"g, must also be a linear
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combination of g,, g, ... g,. So, from eqn (7-6.11) we can obtain a linear
combination of g’s which are proportional to functions /' which belong
to T and if we apply P* to each g function in turn, we get n linear
combinations of g’s which belong to I'* and from which we can find n,
which are linearly independent and, if we wish, orthonormal.

Hence we have a method of finding basis functiona which belong to
a given irreducible representation, if we are given some function
space which produces a reducible representation. Notice that in
addition to the O, the construction of P* (eqn (7-8.6)) requires only
the knowledge of the characters of the I'* representation.

If T* occurs, for example, twice in I'™? then

go=fit oS
and /7' and # are both functions belonging to I'* and are both linear
combinations of ff, fY, ..., fa, they differ solely in the coefficients cj,,
ie. n
7 =‘_21¢;¢ff ¢ =12,..n

and "
7 =fc,’,’ 1 s =1,2,...nm

=1
Our method is not capable of separating these two functions; we will

always get a combination:
Prg, = (g/n (77 +/0).
So that in a case like this we will obtain a mixture of two sets of fune-
tions each of which alone would be sufficient to define a function space
leading to T*.
The usefulness of the results of this section will be exemplified by
the problem in § 7-9.

7-7 Character tables and their construction

Since we will continually be requiring the characters of the irreducible
representations of the point groups, it is convenient to put them
together in tables known as character tables. In the character table of a
point group each row refers to a particular irreducible representation
and, since the characters of operations of the same class are identical,
only a single entry x*(C,) is made for all the operations of a given
class. The columns are headed by a representative element from each
class preceded by the number of elements or operations in that class g,.

For example, the ¥, point group has three classes (and necessarily
three irreducible representations) and its character table is shown in
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TABLE 7-7.1
The character table for
the €,y point group'

®w| E  2C, 3oy
A, 1 1 1
A, 1 1 -1
E 2 -1 0

¥ The firat column showa
the labels {sse §7.8) of the
three non-equivalent irre-
dueible representations I'4,
P4y and T'5.

Table 7-7.1. The first row corresponds to I'' in Table 6-5.1 and the
last row to I'? in that table. (We have not previously discussed the
middle representation.) The headings of the columns in Table 7-7.1
are E, 2C, and 30, and they imply the identity operation E (one class),
the two rotations C, and Cj (another class), and the three reflections
c,, a,, and o, (a third class). The names of the three representations
(4,, A,, and E) will be discussed later.

It is easy to check that the characters in Table 7-7.1 satisfy the
orthogonality relationship (eqn (7-3.5)):

3.02%Cor(C* = o3y
for example, the characters of I': are orthogonal to those of T™s:
AXIXD)+{(Ex1x1)4+(3x1lx —1) =0,
those of [ are orthogonal to those of ['*:
(1x1x2)+(2x1x —1)+(8x1x0) =0,
and those of I'* are orthogonal to those of I'*:
(I1x1x2)4+(2x1x—1)+(3x —1x%x0) =0.

There also exists an orthogonality relationship between the columns
of the character table:

®
vE_;x'(Cf)x'(C;)' = (g/9,)0¢ (7-1.1)

and the reader may confirm for himself that this equation too is
satisfied. The proof of eqn (7-7.1) is part of the proof that the number
of irreducible representations is equal to the number of classes of a
point group (see eqn (A.7-3.10)).
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Though the character tables for all the important point groups are
readily available (see, for example, Appendix I at the end of this
book), it makes a convenient summmary of our results to see how the
tables can normally be deduced without explicit knowledge of the
matricea themselves. The following four rules can be used:

(1) The sum of the squares of the dimensions of the irreducible
representstions is equal to the order of the point group,

%
E;‘"’: =

(the proof of this is given in Appendix A.7-2). Since the identity
operation is always represented by the unit or identity matrix,
the first column of a character table is y“(E) = n,. Also we have

zl{z‘(E)}’ =g

Since the matrices [|1], ||1]l, ... form a one-dimensional totally
symmetric irreducible representation of any point group, it is
customary to put the corresponding characters in the first row
and so y(C,) = 1.
(2) The number of irreducible representations r is equal to the
number of classes k; the proof of this is given in Appendix A.7-3.
{3) The rows must satisfy

x
‘Ely.-x"(cf)x'(ci)* = gd,,.
{4) The columns must satisfy

glx'(C‘)x'(C,)" = {9/g,)0,,.

From these four rules it is easy, for example, to construct Table
7-7.1. There are three classes for ¢;, and therefore three irreducible
representations. The only three numbers whose squares add up to six
(the order of the group) are 1, 1, and 2. We therefore immediately have:

€. | E 2C, 30,

1 1 1
1 a b
2 c d
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and have only to determine a, b, ¢, and d. From rule (3} we have

1+2a+3b =0
1+2a%+43b% = 6

and 242 +3d =0
442c243dt =6
hencea =1, = —l, ¢ = —1,andd = 0.

There are several general methods for calculating the characters of
the irreducible representations which are more systematic than the
method we have given. Their drawback, however, is that they involve
long and complex calculations and are only feasible when unse is made
of high speed computers (see, for example, John D. Dixon, Numerische
Mathematik 10, 446 (1967)). Furthermore, Esko Blokker haa described
a theory for the construction of the irreducible representations of the
finite groupa from their characters and though complicated, it can be
conveniently programmed for a computer (see, Infernational journal of
quanium chemistry VI, 925, (1972)). The reader who is interested in the
part that computers can play in group theory is recommended to read
the article by J. J. Cannon in the Communications of the association
Jor computing machinery 12, 3 (1969).

7-8. Notation for irreducible representations

The symbols formulated by R. 8. Mulliken are used to distinguish
the irreduocible representations of the various point groups. In this
section we will outline the general points of the notation and the
reader is referred to Mulliken’s reportt for the details.

One-dimensional irreducible representations are labeled either 4 or
B according to whether the character of a 2n/n (proper or improper)
rotation about the symmetry axis of highest order n is 41 or —1,
respectively. For the point groups ¢,, ¥, and ¥, which have no
symmetry axis, all one-dimensional representations are Iabeled 4. For
9, and @, there are three C; axes and the three C, operations fall in
different classes; those one-dimensional representations for which the

+ This report was published in The Journal of chemical physice, 23, 1997 {1055).
The reader should note that on page 2003 of this report the third line below Table VI
should read: for P, av = IC,, ga = IC;-, for Pyn, Oy = iC;, ag = 1C,. Also, in the
diagram for Py in Fig. 1, the ¢y and g planes should be interchanged. When these
corrections are made, the definitions are the same as those in Fig. 3-6.1 of this book,
with the proviso that our C} axis is Mulliken’s 0, axis and our C; axis is Mulliken’s C;
axis.

Further information on notation is contained in G. HerzBERG's Molecular spectra
and molecular structure, vol. II, Van Nostrand Reinhold.



132 Irreducible Representations and Character Tables

characters of all three C, operations are +1 are labeled A, while the

other one-dimensional representations are labeled B. For 2,4, the

character of S,, determines the label of the one-dimensional repre-
ions.

sel?[“b\?\‘rt(')f}dimex:usiona.l irreducible representations are labeled E, which

should not be confused with the identity element or the identity matrix.

Three-dimensional irreducible representations can be labeled either
T or F; usually 7' is used in electronic problems and F in vibrational
problems. ) .

If a point group contains the operation of inversion, a subscript g
(from the German word gerade) or 4 (from the German word ungev:a_de)
is added to the label according to whether the character of { is positive
or negative respectively. The inversion operation is always repx.'ese'nted
by +1 or —1 times the identity matrix; hence the cha.ra,cte.r is eltlz.xer
+4mn, or —n, where n, is the dimension of the representation. Point
groups which contain # are €,, (n even), Z,, (n even), Z,, (n odd), O,
and & _; and these point groups are often written as ‘6’,@?1. (n eve'n),
2,8%€,(neven), 2,8%, (n 0dd), 0®¥, and €, respectively (i.e.
FR€,),} since they contain all the operations (R) of & plus all th?se
one can obtain by combining each R with 1 (i.e. Ri). There are tw-uce
asmany classes in ¥®%, asin ¢ and therefore twice as many irreducible
representations. Thus for each irreducible representation of & there
will be represented by +1 or —1 times an identity matrix and that there_

- are twice as many irreducible representations in ¥ ® €, as in 9. For I'*

1" (R) = x"(R),

2"(iR) = z"(R)
and for T* 2™(R) = y"(R),

x"(iR) = —x"(R)
{for a proof of these equations, see Appendix C of Schonland’s book
Molecular symmetry).

If the point group has a o, operation but no i operation (groups ‘:f,,h
and 2,, with n odd) the labels are primed or double primed acw@g
to whether the character of o, is positive or negative, respectively.
The situation is similar to the one in the previous paragraph in that oy
will be represented by +1 or — 1 times an identity matrix and that there’
are twice as many irreducible representations in ¥®%, asin ¢. For I

2“(R) = 2"(R),
x*(ouR) = x*(R)
% This notation is referred to again at the end of § 8-3.
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and for ™ 2 (R) = z*(R),
z*(ouR) = —x"(R).

If one can write a point group either as ¥®¥, or TRE, (e.g. Dy
the former takes precedence.

If necessary, numerical subscripts are added to the labels to dis-
tinguish the non-equivalent irreducible representations which are not
distinguished by the foregoing rules. Except for the fact that the
totally symmetric representation (one-dimensional unit matrices) is
numbered and listed first, the numbering is arbitrary and the reader
is referred to Appendix I or Mulliken’s report for the internationally
accepted conventions.

If a one-dimensional representation has complex characters a, 3, ¢, ...
then there must be another equally acceptable representation with the
characters: a*, b*, c*, ... since for a one-dimensional representation the
character of an operation equals the single matrix element representing
the operation. These pairs are usually bracketed together and labeled
E. In fact quite often the reduction which produces the pair of ir-
reducible representations is not carried out, since no useful information
is gained by it and anyway the two always occur together.

The two infinite point groups €, and 2, (= € wov®%,;) have their
own notation. Because these groups have an infinite number of elements
the theorems we have given do not apply and other more elaborate
methods are needed to find their irreducible representations. In & v the
pairs of rotations C(¢), C(—¢) through equal and opposite angles,
belong to a class of two operations, one class for each ¢ value. All the
reflections @, belong to one class. The point group has two one-dimen-
sional irreducible representations and an infinite number of two-
dimensional ones. In Mulliken’s notation these would be labeled
4,, 45, By, E,, ... but a different notation, using Greek letters and
which was developed in early spectroscopic work, is usually employed.
The character table for €, is shown in Table 7-8.1.

TaBLE 7-8.1
Character table for C v

€ov [ E 2C($) way
Ay = X+ 1 1 1
Ay, =X~ 1 1 —1
E, =11 2 2 coa ¢ 0
By = A 2 2 coa 2¢ 0
2 0

By, =~ @ 2 ocoa 3¢
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7-9. An example of the determination of the irreducible
representations to which certain functions belong gl-77-°7~—7e° sl a8 saoTS

In order to demonstrate some of the conclusions of this chapter, we sl ot
pose the question: for the 2, point group, for which irreducible repre- e . o e
sentations do three real p-orbitals and five real d-orbitals or their ST T < | oes §I°9T
combinations form a basis of representation?

In Fig. 7-9.1 the symmetry elements for the 2, point group are glm—m—e o Lad SITT
shown (see also Fig. 3-6.1) as well as our choice of z, ¥ and z axes ° o g1 I
(this choice establishes the orientation of the p- and d-orbitals). In
Table 7-9.1 the corresponding character table is given in full. S|I- 7 77777 ° ¢ < ‘i{ £ '-c-"—f:"z;-_f"c'

d i
3
G €3-S, §17TTINTITING g | € EEF S9YYT
‘eh
y‘(l':-'h‘a‘h e e et D et - 'é: g n o~ o - m * won
7 o TE E‘ & (¥ *FT 775777
g
g
C2a:0u | e~ m o - ——o g 5 A i .
@5 “@ [ [ - E w slz. ] '?-?v-?-u
35 i 38
@ -
e B il Kl E - B H B I
% rtrri {8 = 8 g T
M -
Fra. 7-9.1. Symmetry elements and axea for @. Except for on, the symmetry planes a3 = " ,g f§ = Sﬁﬂ e nm ememea
contain the z axis and the axis alongside which the plane’s label is written. A and B ": S S5 ’_TT_‘O—‘TT—Q 2 m = 9| «lafa wowTE
repr t two diffe t atoms. = 8 = -4 S (&) [ )
[ 8 B~
3
S G777 7-=| ¢ S sl gEs SETYS

To find the irreducible representations which can be produced from & © L
the orbitals we need the characters ¥™4(R) and the effect of O, on the N ’§ § R N I
orbitals. Taking the last point first, we find O,g for all R of @, and © b ! 5 3 LN P
g = Py1» P1» Ps» dy, dy, da, dy. dg and the results are given in Table 7-9.2, N D E S, e e
We have carried out this kind of step before (see § 5-9) and for this © ! (T B = | CTTCC
particular point group and axis choice, the process is particularly H &
simple, for example we have gl o E 5 ‘F 4:: 4 —€r5'r=|,‘?"-€

Pz £
baccy G| =m77°7"77° | 4 g EFE ST
Pa <2 =
4, c sty TTATTTTATY G| FEL FYTI
d, cc 2y 'g
d'xxz L] - O} = 0y § 5] ﬂ-—'ﬁ.:ﬂ: ‘U"'B-"U-‘U"U‘
d o yz 3| =222, 2223 é

M (SRR A | sladd Sddd<

d; oc 322 —rt
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and if we consider O, under the C, operation we have (see eqn
(6-2.5))

x 0 1 x L 0o -1 ol lj=
ylil=4—-1 0 Y or |lyll=|1 v
z’ 0 z 0 1litz"

and thus
Oc.p,.(:c', ¥,2') = pix, ¥, 2) (from the definition of Og)
«<z
o< —y
= —pa(&, ¥’ %)
or, since the coordinates are now the same on both sides of the equation,

Oc.Px = —Pa.

Also, using a slightly different but nonetheless straight-forward way,
we have

O d,(z', ', ') o« Op (@ —y"™)
o« O, i@, ¥, 210, pul’. ¥, ')
— OC.PI("”» ¥, z')oc.P:(-"’r Yy, 7)
oc {—pala’, ¥, 21 —{ps(2’, ¥, 2')}2
= _dl(x" y’: z’)
or Ocd, = —d,.

From Table 7-9.2 and using eqn (5-7.2) we can find the diagonal
elements of the matrices which represent the 2,, point group in the
p-orbital basis and in the d-orbital basis. From these elements we get
the characters of two reducible representations; they are shown in
Table 7-9.3. By applying eqn (7-4.2)

4y = g 32N RIH (R
we have
I'¢ (p-basis) = ['s @ 5w

and
I'r*d (d-basis) = ['» @ [P @ ['Fw»  T'E,

So that we know that there are p-orbitals or combinations of p-orbitals
which form a basis for the irreducible representations I'* and I'*» and
d-orbitals or combinations of d-orbitalse which form a basis for the
irreducible representations I'“1e, I'P1s, T'F2 and I'Fr.
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TaBLE 7-9.3
The characters of the reducible represeniations using

p-orbilals and d-orbiials

3
-]

Td,

O

(- %

Oh

5,

Clb

C,,

’
28

C.

3

p-basis

d-basis

137
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To find out which orbitals or combinations of orbitals produce
which representations, we make use of the projection operator P*
defined in eqn (7-8.6) as

P¥ = 3 2"(R)*O,.
R

By applying this operator to each of the orbitals in turn we project out
functions belonging to I'*. In Table 7-9.4 we collect together the results

TABLE 7-9.4

The results of applying P* for each srreducible
representation of D, to the three p- and five d-orbitals

I Pa Ps Ps d, d, d, de d,
A, o [} 0 0 0 0 ] 18d,
4., 0 o 1] 0 )] 0 ¢ 0
B, /] 0 1] 16d, 0 0 V] )]
B,, [¢] L] 0 1] 16d, 0 0 4]
B, ] /] 0 (1] (1] 8d, 84, (1]
Ay 0 0 (4] (1} L] 1] 1} 0
Ay ] (1} 16p, 1] 0 0 L] 0
B 0 0 0 0 0 0 ] 0
By ] 0 0 (] o 0 o 0
E, 8p, 8p, 0 0 0 0 0 0

of applying the ten projection operators for the 2, point group to the
eight functions. These results are found by simply combining Tables
7-9.1 and 7-9.2. Recalling that (eqn (7-6.11))

Prg, = (g/"n)}{::
we see that p, and p, (or p, and Py) belong to I'*» and form a basis for
that two-dimensional irreducible representation; p, (or p,) belongs to
I d, to I'®u; 4, to DB *; dy and d, form a basis for the two-dimen-
sional representation I'*s; and d, belongs to ™,

Appendices
A.7-1. The Great Orthogonality Theorem

To prove this theorem we first have to prove two theorems (sometimes
called Schur’s lemmas) concerning those matrices which commute with all
the matrices of an irreducible representation. We will call these thecrems
Theorem I and Theorem II.

(Z) Theorem I

This theorem states that the only matrix which commutes (see §4-3)
with all the matrices of an irreducible representation is a constant matrix.
We have to show therefore that if

AD(R) = D(R)A  forall R (A.7-1.1)
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and the D(R) are irreducible, then 4 = AE, where A is a constant, i.e.

A 00

0 i 0
A=

o 0 A

First we diagonalize the commuting matrix 4 by a matrix X

Z =X14X
and define the new matrices
D'(R) = X'D(R)X (all R).

Then
D(RZ—-ZD'(R)= X 'D{R)XX'AX - X"AXX'D(R)X

= X 'D(R)AX—-XT'ADR)X
= XY D(R)A— AD(R))X.
Hence, if D(R)A = AD(R),
D(RZ—-ZD'(R)=0
and Z and D'(R) commute:
D'(R)Z = ZD'(R)
and comparing matrix elements on both sides of this last equation, we have:

hid n , i=12,..2
ED:'k(R)Zkl = Zzikai(R) f_ 19 n

kanl Tl J=1,4,.., ) )
where n is the dimension of the representation. But, since Z is diagonal,

Z,=0 for k+#j

and Z,=0 for ki,
therefore, Di(R)Z,, = Z,D,(R)
or i= L2,..,n (A.7-1.2)

Dy(R)(Z,—2Z,) =0 i=L.52..n

Consider one specific diagonal element of Z, say the_ ﬁ.rat Z,,: if it is different
from all the others, then eqn (A.7-1.2) shows that if ¢ = I

Di(R)y=0 i=23,..n
D (R)=10 t=23,..mn
i t are zero and
that the first row and column except the diagonal elemen
i(:mce the D'(R) are in block form and all the D(R) have been r.educed‘ by
the transformation X—1D(R)X. But we stated that the D(R) are irreducible

i i 1 elements. By
and therefore Z,, cannot be different from the other diagona. i
extension we ﬁn1(li, therefore, that all the diagonal elements of the diagonal

and that if j = 1
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matrix Z are the same:

A 00
Z=0).0
0 0 4

where A == constant, and hence

A4 = X(AE)X~* = iE.

(2} Theorem I1

This theorem states that if for some group there are two different ir-
reducible representations I'* and ' with matrices D*(R) and D*(R) of
dimension a, and », respectively and if a rectangular matrix 4 exists such

that
o AD'(R) = D*(R)A  forall R,
then
Case (a) if n, = n,, either det(4) 20 and the two representations are
equivalent or else 4 = 0 (the null matrix),
Case (b) ifn, . n,, 4 = 0.
Without loss of generality we can assume that the D*(R) and D"(R) are
unitary and zn, < 7, Then:
ADYR) — D*(R)A  forall R (A7-1.3)
end teking adjoints (see eqn (4-3.15))
D(R)tA = At Do(R)
and since D*(R) and D"(R) are unitary
D(R™1A4Y — A'D*(R™)  (see eqn. (6-6.2))
and multiplying both sides of this equation by 4, we get
AD'(R™1H)AY = AATDH(R™Y). (A.7-1.4)
Since the inverses R~! are all, by definition, operations of the group, eqn
A.7-1.3) impli
(A.7-1.3) implies AD"(R™Y) = D*(RY)4
and multiplying by 4t we get:
ADYR™HAY = DHR %441, (A.7-1.5)
Comparing eqns (A.7-1.4) and (A.7-1.5) we obtain
AAYDR™) = DR MAA4".

., by Th I,
Thus, by Theorem 44" — AE (A.7-1.6)

where 4 is a constant.
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Case (a). If n, = n,, then 4 and 4A' are square matrices and the
determinant of 441 is
det(AAY) = det(AE)
det(4)det(4t) = A"  (see Appendix A.4-6)
{det(4)}? = A==
If 2 # 0, then det(4) = 0 and A4 has an inverse and we can write
D'(R) = A'D*(R)A (all R)
and the two representations are equivalent. If A = 0, then 44" = ¢ and
=1,2,..n
11

i
E,:A“A:' =0 i 12.a

r'
if 4+ = k, this becomes
ZA?,:O i=12..m,
7

which is only possible if all 4;; = 0, hence 4 = 0.
Case (b). If n, << n,, then A has n, columns and n, rows and we can fill

n
4 out to a n,Xn, square matrix B by adding (n,—=,) columns of zeros.
Clearly,
enry. BE!' = 44!
and since

det(BB') = {det(B)}* = 0
50 det(4At) = 0, but by eqn (A.7-1.6)

det(4AY) = det(AE) = A"
hence 1 = 0 and, recalling Case {a), 4 = 0.

(3) Proof of the Great Orthogonality Theorem
This theorem states that

3 DA(RIDLR™ = @/n,) 3y, 814

where D*(R) and D’(R) are the matrices for two non-equivalent irreducible
representations of dimension n, and n, for the group ¥4 of order g. There
are two parts to this proof.

(i) Take the irreducible representation with matrices D(S) of dimensions
nXn, where § runs over the operations of the group % and construct the

matri
nx 4 =3 D(S)XD(S™) (A7-1.7)
S
where X is any arbitrary matrix and the summation is over all the operations
of the group. We can show that
AD(R) = D(R)A  (all R)
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and hence 4 = AE (see Theorem I). We do this through the following steps
D(R)4 = D(R)Y D(S)XD(S™)
s

= 2 D(R)D(S)XD(S ) D(R™M)D(R)}
= [): D(RS)XD{(RS)"}] D(R)
5

- [z D(T)XD(T—’):| D(R)
F3

= AD(R).

The penultimate step is true since as .§ runs through the operations of the
group so, by the Rearrangement Theorem {Appendix A.3-1), does RS(= T).
Replacing T by § gives the final step.

Therefore 4 = AE, the value of 1 depending on the choice of X. Let us
choose X to have all zero elements except in the kth row and mth column
and let this exception be X,,, = 1. The value of 4 under thuse circumstances,
we will symbolize as 4,,,.

From eqn {A.7-1.7) and using the rule for matrix multiplication, we can
obtain

L. 1 1=1,2..n
A4y == z E Z Dyp(8)X o Do y(877) = Ak by —1.2 .
5 p=1aml 3 Lgens
Or, since X,, =Ounlessp =kand¢g=mand X, =1,
1 i=12,..n AT1.8
gDa:(S)Dm(S ) = Apn By j=1,2..n (A.7-1.8)
Setting + = j and summing over i, we obtain
g 3 Dy S)Dp(S7") = 1y
-l
or, ) "
P = 3 {3 DS DulS))
=1
= ; Dmk(s—ls)
= g D, (E)
= ; amk
=g8. (g == number of elements in %)
and hence

Aim = (g/n) By = (g/n) Oy
* Note that D(R-1)D(R) = D(R-'R) = D(E) = E.
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and eqn (A.7-1.8) becomea
; Dy(8) D, (ST = (g[n) 8, 7
or for the uth irreducible representation I'#:
g DL(S) D5 (S7Y) = (g/n,) e, 6,y (A.7-1.9)

(ii) Construct the matrix
4 = g DA(S)XD"(8™)
where I'* and I'"* are two non-equivalent irreducible representations of the

group ¥ with dimensions n, and n, and X is any arbitrary matrix. Matrix
4 satisfies Theorem II since

D*R)4 = 3 DHR)D*(S)XD"(S™)

= 3 DUR)DHS)XD'(S ™D (R)D(R)
_ [; DF(RS)XD'{(RS)"}] D*(R)

- [; D“(T)XD'(T"):I D"(R)

= AD'(R)
[these steps are similar to the ones we carried out in Part (i)].
As D*(R) and D"(R) are chosen to be non-equivalent, Theorem II requires
that 4 = 0, hence, choosing the matrix X as before, we get
= 1,2,... n,,
k=1,2,... n,

3 DuS)DL(S™) =0
m=12,...n,

(A.7-1.10)
j = 1,2,... n,.
Combining eqns (A.7-1.9) and (A.7-1.10) and replacing the symbol S by
the symbol R, we have:

; D:'k(R)D;"(R"l) = (9/",,) auv 61'! almn‘ (A'7'1‘11)

When g = », or I'" = I'" (the same representation) we have eqn (A.7-1.9)
and when u = v we have eqn (A.7-1.10). Eqn (A.7-1.11) represents the
Great Orthogonality Theorem.

A.7-2. Proofthat 3 2 =g

M
The proof that the sum of the squares of the dimensions of the irreducible
representations is equal to the order of the group has three parts: (1) intro-
duction of the regular representation, (2) the Celebrated Theorem, (3) the
final steps.
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(Z) The regular represeniation

The regular representation is a reducible representation composed of
matrices constructed as follows: first write down the group multiplication
table in such a way that the order of the rows corresponds to the inverses
of the operations heading the columns; in this way E will appear only along
the diagonal of the table, For example, from Table 3-4.2 we would have

E A B C D F
EY=E |E A B € D F
AN=A)|A E D F B C
BY=B)|B F E D C A
cY=C)|C D F E A B
DY=F)|F B C A E D
FY{=D)|D € A B F E

Next, the matrix of the regular representation of the operation R is formed
from the resulting table by replacing R by unity and all the other operations
by zero. For example, in the above case we have

010000
100000
000001
DFOS(A) =
000010
000100
0061000

It is clear that y™%(E) =g and that if R = E then y™#(R) = 0, since
only D**3(E) has non-zero elementa on the diagonal and it has unity g times
(g = order of the group).

We must now confirm that the matrices formed in the above way do
indeed form a representation of the group. We have to prove that if the
operations of the group are R,, R,, ... R,, then

=12,...
D™%(R,R,) = D™5(R,)D"(R,) :_ - : (A7-2.1)
or, in terms of the matrix elements, o
L
DI(RR,) = 3 Df(R)DFF(R,). (A7-2.2)
From the way we have set up the matrices, we know that
1 if R'R,=R.R
DZ*(R,R,) = i e b ;
b (RLR,) [0 if RR,% R.R, (A.7-2.3)

if R;'R,=R,

1
DIS{R ) —
W (Re) {0 if R;'R, + R,
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d
o D,,,(R)_{l if R;'R, =R,
#AT 0 if R7'R,+# R,

By the Rearrangement Theorem (Appendix A.3.1) there will only be one
value of j for which Ry*R; = R, and only one value of j for which Rf 'R, = R,.
The sum over j in eqn (A.7-2.2) will vanish unless for some single j value
both DZF(R,) and DP(R,) are simultaneously non-zero and this will ocour,

if at all, if
(RY'R)(RY'R)) = R.R,
o R;'R, = R R,
in which case the sum will equal unity. So we have
1 if R{'R,= R,R,
0 if R;'R, = R,R,

which when compared with eqn (A.7-2.3) shows that eqn (A.7-2.2) is true
and hence the matrices do form a representation of the group.

gD:'f(R.)D::'(R,) - {

(2) The Celebrated Theorem

This theorem states that the number of times each irreducible repre-
sentation I'” occurs in the regular representation I'"*¢ is equal to thedimension
of I'* (n,). This is easily proved by using eqn (7-4.2). We find, since y™%(E) = g
and if R # E, y™%(R) = 0, that

a,=g" ; 2R (R)*
= g "5 (E)y"(E)*
=g 'gn,
=n,. (A.7-24)
(3) Proof that > nk = ¢
”

By its construction the dimension of ™% js equal to the order of the
group g but it must also be egual to the sum of the dimensions of all of the
irreducible representations to which it can be reduced, that is

2 an, =g
»

but since for I'"™ a, = n,, we obtain
=y

A. 7-3. Proof that the number of irreducible representations r
equals the number of classes &
This proof is quite complex and we will first summarize the definitions
(some of which have appeared before, see § 3-5) which are to be used.
C,; = any operation in the ith class
C, = E, class 1 is the identity operation
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C,. = any operation in the collection of inverses of the operations in the
ith class

R{® = jth operation of the mth class
R = any operation of the group, irrespective of its class

K, = the sum of the operations of the sth class
K, =E
K, = the sum of the inverses of the operations of the ith class
¢, = the number of elements in the ith class

g = 1.

The proof of & = r has two parts of which the first is to prove that K, K,

is solely composed of complete classes.

x
(I) Proof that KK, = ¢,,, K,
=1

To understand what it is we wish to prove, consider the symmetric tripod
point group ¥, for which there are three classes and define

K,=E

K, = o, + o+a}

Ky, =C3+ C:-
Then

KK, = K,

K\ K, =K,

KK, =K;

K,K, = 3K, 3K,

K,K, = 2K,

K,K; = 2K, + K,
since, for example,

K,K, = (e;+0y+o7) o, +o7+a7)
= oj0,+0,0;+0.071070 o 6 | 6r0)
+0o76,+0ja;+ 077
= E+C3+CH C3H+E+Cy;+Cy+Ci+E
= 3E+3(Cs+C3)
= 3K,+3K,

and we see that the product of any two classes produces a linear combination
of complete classes.

Consider the transformation R-1C,R for all operations of the ith class
with some operation R of the group; the operations produced by this trana-
formation are

(a) equal in number to the number in the ith class;

(b) all different (from the uniqueness of group multiplication which is

itself a result of the Rearrangement Theorem);

{¢) members of the ith class (by definition).
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As there is no opportunity for duplication, they are therefore the same as
the ith class, hence
R'K.R = K,.

Now, we know that KK, must, at least, be some linear combination of the
operations of the group, so:

KK, = ..+aRIP+bRI-... (A.7-3.1)
where RT* and RJ are two operations of the mth class, conjugate to each
other by definition

RIR"R = R, (for at least one R of the group) (A.7-3.2)

and a and b are positive integers.
If we use the same R as in eqn (A.7-3.2) to transform the left-hand side
of eqn {A.7-3.1), we get
R'K,K,R = RK,RR'K,R
= KiKJ
= ...4+aR"+bR+... (since R'K,R = K, etc.)
and transforming the right-hand side of eqn (A.7-3.1), we get
...+aRRPRLOR'RIR — ...4+aRP+....
Therefore
co aRPHORTA-... = ... +aRD ...
and hence a = b. By generalizing this result we see that every operation
in the mth class ocours equally often in K;K,, hence, K, K, consists only of
whole classes x
KK, = Zlcu,,K, (A.7-3.3)
—

where c,,, are positive integers.

(2) Proof that k = r
We will define the matrix A} by:

[ 1)
1=23 D'(R.) (A.7-3.4)
m=1
that is, A} is the sum of all the matrices representing the operations of the
ith class in the I'* irreducible representation. Then A} commutes with
D*(R) for all R, since
a4

A} = EID"(RL)
= g D(RIRLR) (see Part (1))
Ml
= $ prY) DR D(R)
Ml

- D'(R-'){ b D'(R:,.)}D'(R)
mael
— DRy AJD%R)
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[note that DY(R-1) = D¥(R)™1, see eqn (6-5.2)] and therefore
D" (R) A} = ALD'(R).
Because of this commutative property, we can use Theorem I (Appendix

A.7-1(1)) and write:
(1)) and wri Al = AE {A.7-3.5)

where AlE is a constant matrix. Eqn (A.7-3.5) implies that the characters

satisf
4 g:27(C;) = Aim,
= A" (E)
80!
27(CY)
Vg 1 A.7-3.6
1( e £ (E) { )

From egn (A.7-3.3) (see Part (7)) we get, by using the I'* representation,
. o1 91 [T

AYA} =3 D'(R,) > D'(R) =3 3 DYRLR)

m=-=1 =1 1

m=1i=
k [L]
=2 cmZ D'(RY)
pml qul
x
=3 cipdy
pul

E
Ay = 2 Cosphy
=1

or
and from eqn (A.7-3.6)
9:2°(G) 9,2°(C)) _ * c 7:%"(Cp)
E B s y(E)
&
94" (Cx™(C;) = x"(E) zlcmg,z"(C,). (A7-3.7)

In eqn (A.7-3.3) E appears in KK, only if j = i’, (that is the inverses
of the operations in K, ail appear in one class and we denote the sum of the
inverses by K,) and then E appears g, times. Therefore,

{0 JFE
G = .
A J=t.
If we sum eqn {A.7-3.7) over all », from » = 1 {0 ¥ = r (r = the number of
irreducible representations) we get

r k r
90, 2,2 (COL(C) = 3 tussts TAENY'(C). (A7-3.9)

(A.7-3.8)

Since .
2%R) =Y ax"(R) (I'™® = regular representation)
y=1

=3 ®)

=32 EE®R)
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and

0 if R#E
IR —
xR {g if R=E
we have 0 if RAE
r i
'E VR j—
Sr@Er®) [g R

eqn (A.7-3.9) now becomes

r %
g4y le"(C‘)x'(C,) = 5_,;'34.«,990691
y= p—

= Cipnhd

. = Cing
and using eqn (A.7-3.8),
< v » 0 .f j "
95 2, 2" (C)x"(C,) = { A
=1 gg if j=i
and

3 2(ConCy) = Wla) b

and for & unitary representation, since y"(R~1) = y*(R)* (see the line below
eqn (7-3.4)),

3 2CIEC)* = (ala) 8

This final equation shows that k& r-dimensional orthogonal vectors can
be formed by using the r characters x*(C,), » = 1, 2,... r, as components
and hence ¥ < r. But we have already shown (eqn (7-3.7)) that r < &, so
therefore k = r as well as

k
glx"(Cf)x"(C,)" = (9/g.),;. (A.7-3.10)

PROBLEMS

7.1. Given the characters y of a reducible representation I' of the indicated
point group ¥ for the various classes of & in the order in which these classes
appear in the character table, find the number of times each irreducible
representation cocurs in I,

(a) ?zv X = 4: _2; 0, —2,

(b) g'h X = 41 -l; ]l 2, -1! '_ll

(€) Dog x — 6,0, —2,0, —2, 0,0,

@ & x=150 —1,1,1, —3,0,5, —1, 3.

7.2. Consider the four functions of Problem 5.2 which form a basis for a reducible
representation I' of @,. Using projection operators find the orthonormal
basis functions which reduce I'. Assume (f}, f;) = ;.

7.3. Show that the characters of #,, obey the orthogonality rulee of eqns (7-3.5)
and (A.7-3.10).
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7.4. How many times does each irreducible representation of the ¥, point group
occur in the nine-dimensional representation found in Problem 5.3?

7.5. Consider the group whose group table is
E A

B E
C B

Oty

»

Q
2OEN W
a0 0

write out the matrices and characters for the regular representation of this
group.

7.6. Determine the irreducible representations to which the following real
orbitals belong for the indicated point group:

(a) Py, Pas Py in P and Py,
(6) dy, dy, dy, d,, d in O,
(G) dlr d’; d’v d‘; d; m g,hv
(d) &y, dy, dy, d,, dj in T 4.

8. Representations and quantum
mechanics

8-1. Introduction
Ix this chapter we introduce the Schrédinger equation; this equation
is fundamental to all applications of quantum mechanics to chemical
problems. For molecules of chemical interest it is an equation which is
exceedingly difficult to solve and any possible simplifications due to the
symmetry of the system concerned are very welcome. We are able to
introduce symmetry, and thereby the results of the previous chapters,
by proving one single but immensely valuable fact: the transformation
operators O, commute with the Hamiltonian operator, 5. It is by
this subtle thread that we can then deduce some of the properties of
the solutions of the Schridinger equation without even solving it.
Further, we will find in this chapter that wavefunctions (nuclear or
electronic) must be functions which form bases for the irreducible
representations of the point group to which the molecule belongs. With
this knowledge we are able to determine which integrals over molecular
wavefunctions are necessarily zero and this in turn {next chapter) leads
to well known spectroscopic selection rules.

8-2. The invariancs of Hamiltonian operators under O»

Aside from relativistic and quantum electrodynamic effects, a single
molecule in free space is completely described by the Schrédinger

equation #Y = EY, (8-2.1)

where 5, the Hamiltonian, is an operator defined by certain quantum
mechanical rules and which can be determined solely from a knowledge
of the number of electrons and nuclei and the charges and masses of
the nuclei. ¥, the total wavefunction, is a function of the coordinates of
the electrons and nuclei; it defines through further quantum mechanical
rules all the properties of the molecule. F is a constant and is the total
energy of the molecule. Egn (8-2.1) is similar to eqn (4-4.1) and E and
¥ are called the eigenvalues and eigenfunctions of the Schrodinger
equation. The equation is solved by finding funections V" such that when
they are acted upon by 5 the functions are simply regenerated
maultiplied by a constant. For molecules containing more than three
particles, solution of Schrédinger equation is no easy matter (because of
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mathematical difficulties) and one has to resort to approximate methods.
The reader might note that if one is interested in systems which are
changing with time, then eqn (8-2.1) takes a slightly different form: the
time-dependent Schrddinger equation and the eigenfunctions of this
equation are functions of time.

One way of simplifying eqn (8-2.1) is to use the Born~-Oppenheimer
approximation; we will not go into the details of this approximation
but baldly state the results which come from its application; these are:

¥ = Ye1¥nuo

where explicitly y,, is a function of the coordinates of the electrons
alone and y,,, is & function of the coordinates of the nuclei alone. If
we consider & molecule with n electrons and N nuclei, we can let X,
symbolize the collection of 3z electronic coordinates zj", z§", =3, =",
a2, 2™, 2™, 2{™ and X,,, symbolize the collection of 3N nuclear
coordinates (or displacements of the nuclei from certain equilibrium

s () A1) 1) (8} p(R) (D) (N} L(N) (N},
positions) §,°, & s @ g, B 87, Y, & ; so that

Ve = ’pnl(xeh Xnne)

and ¥owe = V’nuc(xnuo)

and we refer to X,, as the electronic configuration and to X, as the
nuclear configuration.

In the Born-Oppenheimer approximation y,, and y,,.are determined
by two separate equations, an electronic equation

HelWel = EelVel (8'2'2)
and a nuclear equation | TR (8-2.8)
where
Hy = Ty+V, (8-2.4)
T., = electronic kinetic-energy operator
=M sw 8-2.5
T 87'm gl ' (8-2.5)
V., = potential-energy operator (contains electron—electron

and electron-nuclear terms)
m = mass of the electron

V? — Laplacian operator for the ith electron

» & o

= aziﬂl + az;"’ + az;"’ (8-2.6)
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and
Hnuo = Ihnuet Vnno (8'2'7)
Tuuo = nuclear kinetic-energy operator
—ht N ] o
=35 ,Z_:IE Vi {8-2.8)
Voo = Eo(Xyge) +nuclear repulsion terms

M, =— mass of the ith nucleus
V! = Laplacian operator for the ith nucleus

1 o0 o
=7 (20
Essentially Chapter 9 is concerned with the solution of the nuclear
equation (egn (8-2.3)), whichinvolves the subject of molecular vibrations,
and Chapter 10 deals with examples of the solution of the electronic
equation (eqn (8-2.2)). The reader will have observed that the eigen-
values of the electronic equation &,, which oceur in ¥, ., are normally
required before the nuclear equation can be solved, the latter equation
providing the final total molecular energy E.

From our point of view the most significant thing about the Hamil-
tonian operators H,, and H, , is that they both commute with the
operators O, we say that H,, and H, . are invariant under all sym-
metry transformation operators of the point group of the molecular
framework

OxHyf(Xo) = HyOpf(Xa) (8-2.10)

and OlHnnef(Xnuo) = Hnucolf(xnuo)v (8'211)
where f(X,,) and f(X,,,) are functions of the electronic and nuclear

coordinates respectively. We can prove the truth of eqns (8-2.10) and
(8-2.11) by showing that

0T, f(Xa) = Tea1Opf(Xe) (8-2.12)
olTnnof(Xnuo) = Tnucolf(xnnc) (8'2'13)
olVelf(Xel) = Velolf(xal) (8-2.14)
Oanaof(Xnuc) = Vnnool.f(xnuc) (8'2'15)

and this is done in Appendix A.8-1.
Now consider the situation when there are degenerate solutions to

the equation Hy = Eyp (8-2.18)
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(this equation stands for either eqn (8-2.2) or (8-2.3) and what follows is
good for both electronic and nuclear cages). We have

Hy, = E,p
H!P; = E,p;
.. ... ete.

and since H is a linear operator (see § 2-2) any linear combination of
1, ¥, ete. will also be a solution with the same eigenvalue E,, i.e.

H(aypi+byi+...} = Eap;+byi+...).

Therefore, all the solutions with £ = E, form a function space associ-
ated with the energy ¥, (see § 6-5) and if n, of them ¥, y;,...., ¥;,
are linearly independent, the space will be n,-dimensional.

If we can show that the functions Ogy; (all R and j§ = 1, 2,..., »,)
also belong to the function apace for energy E,, then we can write

Oyl = 3 DURW, 5 =1 2um, (8-2.17)

and the y; will form a basis for a representation (with matrices D(R))
of the point group whose operations are R. It is easy to prove this in
the following way:

H(O,y)) = Ox(Hy})  (H and O, commute)

= ORE,y;
= E(Oxy})

and therefore O,y is a solution of eqn (8-2.16) with an eigenvalue K,
and it is consequently a member of the function space; it can therefore
be written in the form of eqn (8-2.17). We say that the linearly indepen-
dent degenerate wavefunctions for energy level E, form a basis for the
representation T,

We assume that all the degenerate wavefunctions associated with &,
can be obtained by all the O, acting on a given wavefunction; this is
known as normal degeneracy. Any degenerate wavefunctions which
cannot be obtained in this way we consider to be accidentally degener-
ate, i.e. accidental degeneracy has no obvious origin in the symmetry
of the system. Barring such an accidental degeneracy, the representa-
tions produced by eqn (8-2.17) will be irreducible since no smaller
matrices could express the most general transformation. We can think
of accidental degeneracy as the numerical coincidence of a number of
different energy levels, each with its own irreducible representation.
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Or, put another way, if the matrices in eqn (8-2.17) are not irreducible
then the degeneracy is deemed to be accidental.}

Since we know all the irreducible representations of a point group,
we can tell a lot about the possible solutions to eqn (8-2.16), without
actually solving it. For example, for ammonia which belongs to the €,
point group, we know from Table 7-7.1 that its electronic and nuclear
wavefunctions must fall into the following three categories:

those which are non-degenerate and totally symmetric (unchanged

by all the transformation operators OQ,), they will belong to the r

representation;

those which are non-degenerate, unchanged by O, but which

change sign under O, , they will belong to s,

pairs which are douny degenerate and under both O, and O, each

wavefunction of a pair produces a linear combination of 1tself and

its partner, they will belong to IT'*.

8-3. Direct product representations within a group

It is always possible to form a new, and in general reducible, repre-
sentation I' of a given point group from any two given representations
I'* and T"" of the group. This is done by forming a new function space
for which the basis functions are all possible products of the basis
functions of T* and I'". Let the basis functions of I and I'V be

ffin Ih,

and fLfi 1,
respectively, where n, and n, are the dimensions of I'* and I'". Then
the basis functions for ' will be fff] (i = 1,2, ...,7,;5 =1,2,...8,).

We will put these functions in what is called dictionary order
=i, 6 =Ffifs .. gﬂ, = fifa,
VWS | = fifi, Toyt2 =fifs ... =f;f:,
................ =fafon

1 Examples of accidental degeneracy are rare exnept in probleme in which the
Hamiltonian involves & continuously variable parameter, such as the strength of an
electrie or magnetic fleld. In such cases accidental degeneracy can oceur for certain
speoific values of the parameter in question at which a pair of energy levels cross. Such
degenerasy is exceptional, unpredictable, and easily recognised when it doea oceur.
The reader might note that scme authors classify the degeneracy of hydrogenic wave-
funections of the same n value as acoidental. However, this in faot is not accidental
degeneracy since Fook (Zeitachrift fur Physik, 88, 145 (1936)) has shown that the
degeneracy can be considered to arise from a four-dimensional rotational symmetry of
the Hamiltonian in momentum space. A complete discussion of group theory and the
hydrogen atom has been given by Bander and Itzykson (Reviews of modern Phyasics, 38,
330 (1966)).
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8o that with this convention our new basis functions are

g1 Gas- - Inyn,:

The new functions will form a basis for a n,n,-dimensijonal represen-
tation which we will symbolize by

'=T"eI" (8-3.1)

I*®I" is called the direct product (or Kronecker product) of the repre-
sentations I'* and I'". The sign ® does not mean multiplication, it is
simply a signal that the direct product of two representations has been
formed in the manner given above.

That the g functions do indeed form a basis for a representation of the
point group can be verified by considering the effect of the transfor-
mation operators O,

OXlfIf]) = (OxfDOu) = 3 I DLRIDLRSY;  (8-3.2)
or, if we define

D> (Ry = Dy (R)D(R), (8-3.3)
Oy, = gD:‘?"(R)g, (8-3.4)

where, by using dictionary order, the sum over P and ¢ becomes a sum
over 8. The n,n, product-functions g, are thus transformed into linear
combinations of one another by the transformation operators O, of
the group; they therefore form a bagis for the I (=T"eI") nn,-
dimensional representation of the point group.

The matrix D*®"(R) that corresponds to the symmetry operation R
is a square matrix of order n,n, and its elements are the (n,n,)* possible
products of each of the n; elements of D*(R) with each of the n®
elements of D”(R). The matrix 2*®"(R) is called the direct product of

DA(R) and D'(R):  pusw gy _ DRy D"(R). (8-3.5)
The direct product of two matrices is quite different from the ordinary

matrix product. First, let us consider how the indices of the various
matrix elements are related. By comparing eqns (8-3.2) and (8-3.4)

we have =
and fl‘:f; =g,

Hence the subscript r in D*®(R) is determined by the subacripts { and
J» while s is determined by p and ¢. The dictionary-order convention
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then gives the following table:

t J r

1 1 1

1 2 2

1 n, n,

2 1 n,+1
2 2 n,+2
2 n, 2n,

n n, nyn,

"
The same table holds true with ¢, j, and r replaced by p, ¢, and s respec-

tively. . )
Agya.n example, consider the direct product of a 2 X2 matrix 4 and

a 3 x 3 matrix B, then eqgn (8-3.3) gives:

A A Bll Bll Bll
A“ A" By B By
woom By, B, B,

A3 By AypByy AynByy AyBin AeByy AyBi,
A,Byy AyBiy A By AaBgy AjByy Ajp By
= || A} Bsy A3 Bys Ay Byy AysByy AyaBsy AjaBssll (8-3.5)
ApBy ApBiy AnBiy ApBin ApBy, AnBy
Ay By AyBsy ApyBay AsgByy AgBey AgBy
AuBsy AupBsx AnByy AnBy ApBs AgBy,

which can be partitioned into four sub-matrices
AnB | ALB

A®B =

AnB | AyB

and is very different from ordinary matrix multiplica.tic-fl.
The characters of the direct product representation will be

2O (R) = 5 D12R) =3 IDLRID}(R)
= 2" (R)z"(R) (8-3.6)
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(the easiest way of confirming the subscripting used here is to look at

eqn (8-3.5)).
We can, of course, take the direct product of more than two repre-
sentations, for example I = I"oT™*err (8-3.7)

will, by extension, also be a representation of the point group. We
simply apply the direct product rule twice. The characters for this
representation will be

2Ry = z°(R)*(R)Z"(R).

In general, the direct product representations are reducible and
using the formulae of § 7-4 we have, if I'f are irreducible representations

k
eI’ = YeI", (8-3.9)

s}

(k¢ = number of classes = number of irreducible representations)
X
re(R) = Saxi(R), (8-3.10)
=1
a; =g7! g (R (R)* =g ; r“(R)x"(R)y'(R)*.  (8-3.11)

This technique of decomposing a direct product representation will be
of great use in the next section.

The reader is cautioned that the term direct product has a second
meaning in group theory. If the group % has the elements g¢,, ¢5,... 9,
and the group 5 has the elements Ay, A,,..., 5, and if gk, = h,g, for
all ¢+ and k, then the group whose elements are

A +=1,2,...n
9 p_1,2..m
is said to be the direct product of group ¥ and 5, e.g. D3y = 2,9%,,
€ = €21®%..T We have already come across this situation in § 7-8.

8-4. Vanishing integrals
In this section we derive certain rules which will determine whether
or not an integral over given electronic or nuclear wavefunctions
vanishes; from such rules we can deduce spectroscopic selection rules.
Congider the integral
[ v (X FHX)p?(X) dr

1 The reader may check that the operations of € (E and {) commute with all the
operations of 2, and that the operations of ¢, (E and @},) commute with all the operations

of €,.
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where y°(X) and y*(X) are electronic or nuclear wavefunctions which
belong to energy levels K, and » Tespectively and form a basis for the
irreducible representations I'” and I'. X is the usual electronic or
nuclear configuration and F*(X) is a given function of X belonging to a
function space which we will assume generates the I jrreducible
representation. The integration is carried out over all of the electronic
or nuclear coordinates. It is apparent that the integrand,

(X)) FA(X)p"(X),
is one of the basis functions for the direct product representation

I*oI"®I”. (Note that v*(X)* belongs to I'"*)t If we carry out the
reduction of this representation

F*@I*Qr* = a,[+a,I* +... (8-4.1)

then the original basis functions, y°(X y*F}(X)y°(X), can be expressed
in terms of the basis functions which generate the irreducible repre-
sentations T, I ete. i.e.

VI(X)P FHX)pP(X) = cof +epff +... (8-4.2)
If we apply to the integrand the projection operator P* (sce § 7-6)
where P* — 3 1 (R)*O,
f 4

and it happens that
Py (X)* FAX)p"(X)} = 0

then I'* does not appear in eqn (8-4.1) and J* does not appear in eqn
(8-4.2). If I"*®@I'®I” does not contain I, the totally symmetric
representation (for which y(R) — 1 for all R and P! — 3> 0,), we
will have o
0 = Py" (X FHAX )P (X)} = 3 Op{y (X)* FHX)p?(X)). (8-4.3)
¥

But the O, are such (see § 5-7) that for any function ¢(X)
Jexydr = [ 00Xy dr = [ 02Q(x) ar,
therefore, summing over all R,
g [aX)dr = [ 3 0,0(X) dr
where g is the order of the group, and consequently
[ X FAE)WAX) dr = g7 [ 3 Opiy"(X)* FHX)y?(X)) d.

+ I'*# ia the irreducible representation whose matrioces D?(R)* are the conjugate
€omplex of the matrices of I'®. If D?(R) are real then I'* = I,
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Hence from eqn (8-4.3) we have the important result that the integral
F¢"(X* FA(X)y*(X) dr will be zero if I' does not appearin I"*@MeI”
(this is & sufficient but not necessary condition).

This same condition may be expressed in an alternative way. If
2"(C,) is the character for any element in the ith class in the I'* ir-
reducible representation, then

Z“QF(CJ = 2" (Cy*x"(C)

(note that x"*(C,) = conjugate complex of ¥°(C,) = 3°(C,)*) and the
number of times the totally symmetric irreducible representation I
occurs in the reduction of I"*®I™ is

k L3
@ = g7 304 HCHHC)* = g7 3 g (C)*(C)

and recalling eqn (7-3.5) and the fact that I'” and T'* are irreducible
representations, we have a =8, (8-4.4)

Hence I'' appears once in T**@I™ if z = ¢ and not at all if x4  o.
Now consider the direct product representation I™*QI*®I'”. If in the
reduction of I*® I the representation I'* does not occur, then by eqn
(8-4.4), a; = 0 and I*@TI*®I" does not contain I'* and

[ v(@rP P Xy (X) ar

is zero. So that reduction of I"®I'” and checking whether it contains
I'* or not is all that is required to see if the integral vanishes. Also, if
FXX) is replaced by an operator H which belongs to the totally
symmetric irreducible representation I''[}1(R) = 1, &all R]T then

[ V(X Hy"(X)dr =0 (8-4.5)

unless I'* = I'”, i.e. unless the two wavefunections belong to the same
irreducible representation.

Appendix
A.8-1. Proof of eqns (8-2.12) to (8-2.15)

The proof of these equations follows that given by Schonland.

To prove eqn (8-2.12), consider first a single point with coordinates z,, z,,
and z,. Under the operation R this point moves to zi, r3, z3 where, by egn
(5-2.17), s
#, =23 D,(R)x,, i=1273 (A.8-1.1)

F=1

tSee page 218.
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and if the coordinate system has mutually perpendicular axes, the matrix
D(R) will be orthogonal, so that
+1=1,2,3

3
Dy (R)D,(R) = 4,
kgj, ik( ) ,ﬂ:( ) i3 j — l, 2, 3
Now, by definition, if f is some function of the coordinates f(z,, z,, z,) then

O‘f(x;’ x5, #3) = f(xy, Ty, Zy)
and if we form a new function V2f, where V? is the Laplacian operator, then:
OR Vl_f(::i, z;' x;) = vzf(xl’ Ty» x!)
= VIO, f (!, z}, z}). {A.8-1.3)
The right-hand side of this equation has the form V3g’, where

(A.8-1.2)

g = Olf(xi. xy, T3)
and V? refers to differentiation with respect to z,, z,, 2.

Now
o _ om0 om o 2

9z, Oz 0z, 0Ox,0z, Ox, 0z,

and since, by eqn (A.8-1.1),

oz,
5;’ = D,(R)
we have 3’ * s 3
N Da:(R)_, .
0z, =1 o}

Differentiating once more with respeot to z, gives

Bgl 2 3 a (ag’)
= D (R)D, (R—|—=
ot =22 DalRDal Ry o\
and summing this equation over the three values of k gives
3 2.7
v! L _g_
d gl ax:
3 3 3 a a ,
=333 D,k(R)D..,:(R)__'(_G’)
k=1j=1¢=1 az, az’
= i‘ i 3 aa' (a_g:_) (see eqn (A.8-1.2))
i fml ) axi
2 9 (og
B igl oz, (a,;)
—_ Vrﬂgr.

If we put back g’ = O,j(z,' , 3, n:,',) in this equation we get
V0. f (21, 2}, 73) = V'O f (], 74, 73)-
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Likewise V2f(x1, 2, #3) — V'3f(x1, 3, x3) and egn (A.8-1.3) becomes
[OR(V2f )z, 3, 25) = VP[(Opf) (=1, 2}, 23)]

and since x, zs, T3 oceur throughout this equation, we conclude that
Ox V¥ = V0,f. (A.8-1.4)

Taking an equation like eqn (A.8-1.4) for each electron and multiplying by
—h2%/87*m and adding we obtain eqn (8-2.12).

To prove eqn (8-2.13), let us suppose that R, when it is applied to the
nuclear framework, changes any general nuclear configuration from X/
to X, .., then if the base vectors are transferred as in § 5-4(2) (see also Fig.
5-4.3), we have, in terms of coordinates rather than base vectors,

3
E:«J' — Z;D‘,(R)Em. 1=1,2,3 (A.8-1.6)
Fma

where a displacement from the equilibrium position of nuclens ¢ has been
transferred to where p was before the operation was carried out [in § 5-4(2) we
combined the N equations (one for each nucleus) like eqn (A.8-1.5) for the
base vectors together to obtain a 3N-dimensional matrix]. A slight change
in the derivation of eqn {A.8-1.4) then leads to

O.l V:f(-xnuo) = V:Ollf (Xnuc)‘

Because of the nature of R, p and ¢ must be physically identieal and there-
fore have the same mass, so that

OR_TML V:f (Xnuo) = ‘.le[_ V:ORf(Xnue)

and eqn (8-2.13) follows by addition.

Let us now consider eqn (8-2.15). ¥ __ is solely a function of the relative
positions of the nuolei, i.e. V¥V, =V,  (X,.)- Any symmetry operation
must leave these relative positions, and hence V., unaltered, i.e. if under
R any general nuclear configuration X, becomes X then

Vnuo(Xnue) = Vnuc(x;uc)~ (A.S-l.ﬂ)
From the definition of Oy we have
ORVnnc(X;mc) = Vrue(Xnuo)
= Vuue(x;mo)
Onvnuo = Voo
ORVnucf(Xnuo) = oanuoolf(xnuc)

= Vnuconf(xnuc)

which is eqn (8-2.15).

Last we must prove eqn (8-2.14). ¥, is a function of the relative positions
of the electrons and nuclei, that is V,, = ¥V (X,, X,.,) where X, . in this

or

and
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case ia the specific nuolear configuration used to define the moleculs’s
symmetry. If & symmetry operation R is first applied to the whole molecule,
all particles (electrons and nuclei), then the relative positions of the particles
are unchanged and so is ¥,

Vel(xol’ Xnue) = Vo (Xotr Xpue)-
If we now apply R to the nuclei alone then, gince this only interchanges
like nuclei and by definition leaves the nuclear framework physically un-
changed, V., still remains the same

Vel(xel' Xnuc) == Vel(‘xélr X;mc)

= Vel(X:sll Xnno)-

So that for the fixed nuclear configuration which defines the molecule’s
symmetry, the change of electroniec configuration caused by R, X, — X,
leaves V., unchanged. The rest of the proof of eqn (8-2.14) is the same as
the proof of eqn (8-2.15).

PROBLEMS

8.1. To what irreducible representations can the following direct product
representations be reduced for the specified point group?

(@) T4 @I, T1 @14, T4 QTF, TEQTE for €,,
(b) T¥ QTF, r4,xT4; 1 QI'E for Iy,
(¢) TE1@TE, TEi@T s, TE1@TE: for ¥,,.
8.2. To what irreducible representation must y* belong if the integral

[ v @ P X X) as
is to be non-zero in the following cases?
(a) €, T = TE, 7 = T4, Tde, T'By, B
(b) gﬂl I“ -— P’Elu; r’ == I'EI-
() 4 T2 = ITs; T? = I, T'E, Ty, TTs.




9. Molecular vibrations

8-1. Introduction

Ix this chapter we apply the results of the previous chapters to the
problem of molecular vibrations. Before doing so, however, it is
necessary tohave some knowledge of the quantum-mechanical equations
which govern the way in which a molecule vibrates. We find that the
solution of these equations is greatly simplified by changing the
coordinates of the nuclei from Cartesian coordinates to a new type,
defined in a special way, called the normal coordinates. This change is
no more mysterious than changing, say, from Cartesian coordinates
to polar coordinates when solving the Schrédinger equation for the
hydrogen atom; the basic principle is the same, namely the mathe-
matics is made easier. So we start this chapter with a discussion of
normal coordinates.

We then discover an extremely important fact; each normal co-
ordinate belongs to one of the irreducible representations of the point
group of the molecule concerned and is a part of a basis which can be
used to produce that representation. Because of their relationship with
the normal coordinates, the vibrational wavefunctions associated with
the fundamental vibrational energy levels also behave in the same
way. We are therefore able to classify both the normal coordinates
and fundamental vibrational wavefunctions according to their sym-
metry species and to predict from the character tables the degeneracies
and symmetry types which can, in principle, exist.

Furthermore, knowledge of the irreducible representations to which
the vibrational wavefunctions belong coupled with the vanishing
integral rule tells us a good deal about the infra-red and Raman spectra
of the molecule under consideration.

8-2. Normal coordinates
If we consider a molecule with N nuclei, then the displacements of
the nuclei from their equilibrium positions in Cartesian coordinates

can be writte
n a8 EY, £, HY, 5D, ™

and the corresponding velocities as

é{])’ é;l), é;l), {8)’“- E;Nl

where 5;‘) — dE}‘)/d‘.
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Or we can use the so-called mass-weighted displacement coordinates

gi”, a3, g, g (9-2.1)
with velocities: . . .
ai”s @57, ¢V, ¢ (9-2.2)
where
4" = M

and M, is the mass of the ith nucleus. In actual fact it will be more
convenient to let the subscript on the ¢’s and §'s run over all the
coordinates and velocities, i.e. from 1 to 3N, so that we have:

91> 92 Tar--- Ty
q‘l’ dl’ QS"" QIN
in place of eqns (9-2.1) and (9-2.2).

In classical terms, if we use the mass-weighted Cartesian displace-
ment coordinates, the kinetic energy of the moving nuclei ist

and

iN N .
T =143 3344, (9-2.3)
f=1 jm1

(these terms are of the familiar }mv® type) and the potential energy,
relative to its value when the nuclei are in their equilibrium positions,
is ¥, which can be expanded in a Taylor series as:

w aV) W oWy )
V = Zl. (af,‘ oq;"l‘ ‘}Zl {zl (m oq,q,—I—... (9-2.4)

where the subscript 0 denotes that the derivative is evaluated when the
nuclei are in their equilibrium positions. Since, by definition, V is
minimal for the equilibrium configuration, we know that

2
(%)o =0 i=12..3N (9-2.5)
and if we replace the second derivatives (which are called the karmonic
force constants and are intrinsic properties of the moleculs under
consideration) by
_ ( v ) t+=1,2,..3N
¥ \9gq0¢,s j=1,2,...3N

and stop the expansion after the quadratic terms (the harmonic oscillator
approximation), we have

(9-2.8)

aN N
V= }‘)_:“:21 B,g4,1 (9-2.7)
t T is the classical analogue of the quantum mechanical operator Tpuc defined in

eqn (8-2.7).
1 If the potential energy of the nuclei in their equilibrium positions is Weq, then
V+Wey = Vauc, Where Vny is defined in eqn (8-2.7).
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The classical equation of motion for the moving nuclet is

d (BT) oV .
—{= 0 §=1,2...3N (9-2.8)
94, +aQt
and using eqns (9-2.3) and (9-2.7) this becomes
N, d
E L d'g‘ 2 B,g, =0 i=1,2..3N. (9-2.9)

Now let us choose a set of 3N coefficients (), C,,... and Cyy such
that when each of the eqns (9-2.9) is multiplied by the appropriate C,
and the 3N equations are added, we obtain

d:Q
—_ 9-2.10
Satie =0, (9-2.10)
where v
Q = zl hg, (9-2.11)

(i.e. @ is a linear combination of the mass-weighted displacement
coordinates) and 4 is a constant. There will be, in fact, 3N ways of
making the choice of the 3N coefficients. We can see the reason for this
by looking at the equalities which must exist between eqns (9-2.9) and
(9-2.10), that is we must have

¥.oody, a (W
Zo ol - (2

or
Z; Cd,y=h j=12..3N (9-2.12)
tmm

and N N SN
2.; C':Zl Byq, = J-‘gl kg,

or

N
‘2 OB, =2, j=12,.3N. (9-2.13)
a1

From eqn (9-2.12) we get C, =h,

v
and hence Q =’21 Ogq,

and by combining eqns (9-2.12) and (9-2.13) we have

N
> (By—48,)C, =0 j=12,.3N. (9-2.14)
dml
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For this set of 3N simultaneous equations to have non-trivial solutions
for the €, the following equation must hold true (see Appendix

A.4-3(a)): det(B—2E) = 0 (9-2.15)

where B is the matrix formed from the elements B,, and ¥ is the unit

matrix. There will be 3N roots (values of 1) of eqn (9-2.15) which, when

found, can be used in turn to solve eqns (9-2.14) for the O, (one ad-
v

ditional equation, a normalization equation, 3. €} = 1 is required to
=1

determine ail of the 3N C’s). Since there are 3N A values, there are 3N

sets of C; which will produce eqn (9-2.10). For convenience, we will add

a subscript to A and Q to distinguish the different solutions and an

additional subscript to the C’s to show with which A value they are

associated, i.e.

N
4H:Ch Cunpee Cyyy: @ = ‘g Cutu

aN
A3 :Cy, Cpayee. Cayy: @y = ‘21 Cagy

v
As 2 Crans Caams--- Cayay : Qay = ‘gl Cyangs-

The Q,, Qa.... Qs are called normal coordinales and what we
have done is to transform the coordinates g, to another set Q, such that
eqn (9-2.10) is true. We can form the matrix C by using the coefficients
for each A value ag columns:

Ca Cia - Cisn

Cy, Cas R # e
C =

Civ: Owvs -+ Cinaw

and since B is symmetric, this matrix will be orthogonal (see Appendix
A .4-3(¢)).
As well as satisfying

d'Qe

+4Q, =0 i=1,2,..3N (9-2.16)
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the normal coordinates also satisfy:

N
and WV
V= }2_;41‘0} (9-2.18)

(these equations are proved in Appendix A.9-1).
The solutions of the equations of motion (eqn (9-2.18)) are easily

found to be: Q, = A, cos (Aft+e,) =12, 3N (9-2.19)

where A4, and ¢, are constants and ¢ is the time. Since
w
Q: = ;E Cug;, $=1,2,.3N (9-2.20)
=1
and C is orthogonal, we have

NV
g =‘§10,‘Q‘ j=1,2,. 3N

aN
= ‘g C, 4, cos (2!"*' &)

and if all the normal coordinates are zero except one, say @, (that is
4, = 0 except for i = k), then

g, = CpA, cos (Akt+ &) {9-2.21)

and each mass weighted Cartesian displacement coordinate is varying
sinusoidally with time with a frequency of », where 27y, = A}. Such
a motion is called a normal mode and there are clearly 3N such modes,
each one associated with one of the 3N normal coordinates.

Some nuclear displacements will be such that the bond lengths and
angles in the molecule are unchanged from their equilibrium values and
V is consequently unchanged; such will be the case for translation and
rotation of the molecule as a whole. For a non-linear molecule, a rigid
movement of the molecule as a whole may be expressed as a combina-
tion of translations along, and of rotations about, three chosen axes.
To describe any general translation—rotation movement we will
necessarily require six coordinates and therefore at least six normal
coordinates; hence ¥ is zero for at least six of the @, having non-zero
values. Since ¥V is measured relative to the minimum potential energy
{the value for the equilibrium nuclear framework) ¥ > 0 and since

N
V=% z 1iQ=l
faml
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we have 1, > 0 (@] is always positive). Now the only way in which
3

3 21 2,Q% can be zero for at least six of the Q,’s having non-zero values,

if 2, > 0, is for there to be at least six 1, which are zero. In fact, there
must be exactly six 1, which are zero because if there wers more one
would be able to carry out a normal mode which is not necessarily a
combination of translations and rotations and still have V — 0, this
cannot be done because if the bond lengths or the angles change then
V >0

‘We therefore associate @,, @,,... Qsy_sand 4, 4,,... Asy—¢ (all positive)
with vibrations and @,y _s, Qay—_g,... Qe and

zm_g = Z"N—l = e laN =0
with translations and rotations and write

IN-—¢
V=% gl AQ%

For a linear molecule there are only two independent rotations and an
argument similar to the one above leads to:
aN-s

V=% Z; AL

The point of changing from Cartesian displacement coordinates to
normal coordinates is that it brings about a great simplification of the
vibrational equation. Furthermore, we will ses that the normal coor-
dinates provide a basis for a representation of the point group to which
molecule belongs.

8-3. The vibrational equation
The nuclear equation (eqn (8-2.3)) written out in full is

—hs XN

1
2 i vzwnuc(xnuc) + Vnnownuc(xnuc) = EVnue(Xnno) (9-3.1)
i

872 im1

where the symbols have been defined in § 8-2. It is possible to approxi-
mate y,,, as the product of three functions, one a function of the
coordinates describing translation %, another a function of the
coordinates describing rotation %™ and the third a function of the
normal coordinates describing vibration 4", that is:

Youe = 'P“'Fmtwﬂb'
Eqn (9-3.1) can then be separated into three eigenvalue equations for

the three types of motion. The three eigenvalues will be W* (trans-
lational energy), W™ (rotational energy) and W™ (vibrational energy)
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and the total molecular energy ¥ is given by

E = Wer+Wet+ W™+ W
where W* is the energy of the molecule when the nuclei are kept fixed
in their equilibrium positions (¥ in eqn (9-2.4) is relative to W*°%).

Of the three eigenvalue equations, the one of interest to us is the
vibrational equation. It has a particularly simple form when normal
coordinates are employed because the classical kinetic and potential
energies then have no cross terms (see eqns (9-2.17) and (9-2.18)) and
this fact leads to a simple form for their quantum mechanical analogues
(the kinetic energy and potential energy operators). The vibrational
equation is thua
aN-s a2 3sN—s

2 21 V@ Qv+ (W = & 3 408 ™ @ur Quvd) = 0
(9-3.2)
and if we replace W™ by a sum of terms
Z W,
{ml

and y"™(@,,... @y_s) by a product of functions, each of which is a
function of a single vibrational normal coordinate

sV—e
V’“b(Qv--- QaN-l) = EVi(Q()

and divide by v"%(Q,,... Qsy_¢), then we have
N—8 1 d*e(Q) i8.,,.s , } B
=1 {%(Q‘) aQ? e (W,—314,Q0; = 0.

Each term of this sum is a function of just one normal coordinate and is
independent of all the other terms. Since the sum is zero, each term

must be zero
1 d° 'Pf(Qe) 81:-’ "o
m(c,) do= 7 (=240
or

$=12,..3N—6. (9-3.3)

Eqn (9-3.3) is the same as the well known one-dimensional harmonic
oscillator equation and has as its solutions

v(Q) =N, exp(“i“f@f)ﬂn.(“’Qi) (9-3.4)
and W, = (n,+hr,
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where:
N, is a normalizing constant and is chosen such that

+ o
[ v4@0 4@, =1,

4dniy,
a‘_._zi %,

3&
Y, = —- (fundamenta.l frequency),

n, = 0, 1, 2,... (vibrational quantum number),

H,(xz) = a Hermite orthogonal polynomial, e.g. Hy(z) =1,

H(x) == 2=, Hy(x) = 4222, H,(:v) = 8x% 12z, eto.
The fundamental frequencies v, (5 = 1, 2,. —®6) are related to A,
and since 1, are the roots of det(B— AE) = 0 ¥, are related to the
matrix B and to the molecular force constants B,,. Hence the vibrational
energy levels for a non-linear polyatomic molecule in the harmonie

oscillator approximation are given by
SN--8

= gl (n:+ )by, (9-3.8)

and the corresponding vibrational wavefunctions are given by
sN—s& ) 3N-8

'Pvlb = 'Pﬁ:!l:"'ﬂsx-c = N exp (_* lgl 1;@2 Hﬂn,(a’Qd) (9'37)

and both W™ and y™ are characterized by the values of the 3N —6
vibrational quantum numbers #,, 7ig,... Ngy_,.
We see from eqn (9-3.7) that the lowest energy state, the ground

stale, occurs when n;, = n; = ... ngy_q = 0 and the energy is then
aN—s
= Ex iy, (9-3.8)
W™ is called the zero-point energy. The ground state wavefunction is
V-
w'® = N exp ( —3% 2. a‘Q:) (9-3.9)

where N is a normalization constant.

The vibrational energy levels where all the quantum numbers are
zero except for one which is unity are called the fundomental levels.
There will, in principle, be 3N —6 such levels and the energy of the pth
one (n, =0,n, =0,...0n, = 1,... nyp_o = 0) will be

sN—s
W3t = 2 thri+(1+Dhn, = W5 +hs,. (9-3.10)
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Therefore the frequency of the radiation absorbed or emitted in a
transition between the ground state and a fundamental level is
(WP —Wi")/h =, the pth fundamental frequency. The corre-
sponding wavefunction will be

¥3® = Vo010 < YECH,(adQ,) o $TQ,. (8-3.11)

The infra-red and Raman spectra of molecules are dominated by
trangitions between the ground state and the fundamental levels but,
in practice, the number of fundamental frequencies observed does not
reach 3V —6 since (a) some of the 4, are identical (leading to degenerate
fundamental levels) and (b) selection rules forbid certain transitions.
Both (a) and (b) are determined by the symmetry of the molecule.

9-4, The I'® (or I'*¥) representation

The mass weighted displacements of the nuclei of a molecule from
their equilibrium positions g, can be used to generate a representation
of the point group to which the molecule belongs. If under the sym-
metry operation R, the mass weighted nuclear displacements

91r G35+« Gan
be . .
come 71 9a5--- GaN
then we can write
v
¢ = ZDMRM, §=1,2..3N (9-4.1)

and the matrices D%(R) will form a representation I'® of the point group.
This is just a generalization of what we did for a single point in § 5-2.
In some books the notation D*M(R) and I is used for this repre-
sentation.

Alternatively, one can set up mass weighted base vectors with their
origins at the equilibrium nuclear positions, and transform these
vectors with the symmetry operation R, then

91 9as--- Qo
(if we have three base vectors for each of the N nuclei) will become
qi Qoo+ Gav
and v
Rq, = q; =’§D}’,(R)q,. i=1,2,..3N (9-4.2)

(see § 5-4) and we will obtain a representation I'® identical to the one
before. The matricea D% R) will be unitary and I'* will be a unitary
representation (as the matrix elements are real, the DR) will, in
actual fact, be orthogonal).
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We can change the basis of the above representation by switching
to normal coordinates (or normal coordinate vectors) and obtain a
representation I'* which is equivalent to I'* (see § 6-2). The change of
basis is defined by (see eqn (9-2.20))

aN
Q, =,§C'“q,. i=1,2,. 3N

or v
Q, =,§0ﬁq;: +=1,2,..3N

and the matrices D"(R) of the representation I'*, which is equivalent to
', are found from

N
Qi =2 DL(R)Q, (9-4.3)
or N
RO, =Qi =3 Di(R)O,. (9-4.4)

Since the representations are equivalent, the D=(R) matrices can be
found from the D°R) matrices by a similarity transformation and in
Appendix A.9-2 we show that the matrix which does the transforming
is the matrix € (formed from the coefficients C,,) 80 that

D™R) =C-1DYR)C  (all R). (9-4.5)

Since both ¢ and D%R) are orthogonal so is D"(R) (see Appendix
A.4-4(g)).

As an example, let us consider three sets of base vectors associated
with three identical nuclei which, in their equilibrium positions, are
at the corners of an equilateral triangle (such a system belongs to the
@ point group); cf. Fig. 5-4.3. For the symmetry operation C, we
have from eqn (5-4.3)

0 o 0 0 0 0 —1/2 /32 0

0 0 0 0 0 0 —4/3/2 —1/2 0

0 o o0 o 0 o0 o 0 1

—1/2 /32 0 0 0 0 0 0 0

DYCy) = ||—+/3712 —1/2 0 o 0 0 0 0 o0
0 1 o0 0o 0 o 0 o0

o 0 0 —1/2 432 0 0 0 o

0 0 0 —4/3)2 —1/2 0 0 0 o

0 0o o©o 0 0 1 o 0o o
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If we make some reasonable assumptions about the force constants B,
for three nuclei in such a framework and solve the equations:

det(B—iE) = 0,

o j=1,2,.. 3N
‘_ZI(B«;—lxdu)Ca = Oa E = 1, 2,-“ 3N
N
2Ch=1, k=1,2,.. 3N
Tk

we obtain:
Q: = (—2¢1 +44+ /305 +¢:—1/396)[2/3 (4 = fi}
Qs = (29— /3¢ — 25 +/3¢:—7:){2v/3 (A2 = f3)
Qs = (—2¢, +9a— 3¢5+, +1/34:)/24/3 (4 = f5)

Qi = (292 +2¢51+2¢,)/24/3 (A =10)
Qs = (—2¢,—29,—2¢:)/2v/3 (2 = 0)
Qs = (203 +/304—0s— V3¢ —qs)/2V/3 {4 =0)
Q7 = (€+9s+q0){v/3 (2, =0)
Qs = (24— — )/ V6 (4e = 0)
Qs = (2e—2s)/ V2 {4 = 0)

where the numerical values of f, and f; depend on the particular choice
of force constants, and where 1, to 4, correspond to translations and
rotations. Hence

C =
—2 0 —2 0 -2 0 0 0 0
0 2 o 2 o0 2 0 0 0
0 0 0 o0 o 0 2 2¢v2 O
1 —4/3 1 0 —2 43 0 O 0
-2—\1/5 V3 —1 —43 2 0 —1 0 0 0
0 0 0 o0 0 0 2 —y2 46
1 V3 1 0 —2 —4/3 0 0 0
V3 -1 3 2 0 —1 o0 0 0
0 0 0o o0 o 0 2 —y/2 —/86
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and since C is orthogonal (see Appendix A.4-3(c)) C! = . We can
now evaluate D"(C,) from :

D(Cy) = CDYC,)C = CDYC,)C

1 o 0 0 0 00 0 0
0 —1/2 —4/3/2 0 6 00 0 0
0 32 —1/2 0 0 00 o 0
0 0 0 —1/2 4/3}2 0 0 O 0
=[o o 0 —4/8/2 —1/2 0 0 0O 0
0 o 0 0 0 10 o0 0
0 o0 0 0 06 01 o0 0
0 o0 0 0 0 0 0 —1/2 —4/3/2
o o 0 0 0 0 0 /32 —12
(9-4.6)

It is apparent that D"(C;) is in block form and since the same block
form appears for all the other symmetry operations of the point group,
the I'® representation has been reduced by the change to the normal
coordinate basis. That such a reduction will always occur, is & point
taken up in the next section. Needless to say I'* and I'* have identical
characters i.e. y*(R) = x"(R), for all R.

The reader might note that once the matrix C' has been determined
it is possible, with the aid of eqn (9-2.21) to give a ‘picture’ of a normal
mode. This is done by depicting the displacement of each nucleus, at
some instant in the course of the normal vibration, by an arrow whose
length is proportional to the displacement. In Fig. 9-4.1 pictures are
given for the first three normal modes of the previous example.

9-5. The reduction of I®
The previous example was not an exception: it is generally true that
[* can be reduced by a change of coordinates (or base vectors) from

(/‘|=j1) (’\2=f2) (’\‘.'I =f2)
Fra. 9-4.1. The first three normal modes for the system described in § 94,
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g to @ (or q to Q). As has been mentioned before, the same A value
may occur more than once in the solution of eqn (2-2.15) (in fact, we
know for sure that 4 = 0 will ocour six times), so let us consider that
there are M distinct A values 2y, 4,,... and i, and group together
those normal coordinates which are associated with the same A value
by subseripting them in the following way:

Qia Grare-- @yt Ar
@a1rs Quigyse - Qm,»: Ay

Qvup Quians--- Qv(u,): Ay

Qarcs Qaginrs--- Qasiny) Ane

where 7, is the number of normal coordinates associated with 1, or the
number of times 2, occurs in the solution of eqn (8-2.15).
‘We can then replace eqn (9-2.18) by

1% 3ro, @5
and eqn (9-4.3) by M o
Q.u(:) 2 g F(f)v(i)(R)QvU) (8-5.2)

and we can prove that if u £ 4,

Diomn(R) = 0 (for all R). (9-5.3)
The implication of this last equation is that the D"(R) are in block
form with each », %=, block corresponding to #, identical 2 values, i.e.
each block corresponds to a set of degenerate normal coordinates.

We can prove eqn (9-5.3) as follows. Let Q stand for a set of normal
coordinates which reflect the displacements of the nuclei from their
equilibrium positions in some general nuclear configuration X, . and
sinilarly let Q' define these displacements after they have been trans-
ferred by R to other (but identical) nuclei. Then the relative positions
of the nuclei are unchanged by R and since V is a function solely of
these relative positions (see the footnote to eqn (9-2.7)), we must have
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V(@) = V(@’), (see also eqn (A.8-1.6}). Now
7@) =1 z 31,020

=1 Zl i A {2 ZD (..)«(.,,(R)Q.m}{i > ‘Dﬂ(m’v(l)(R)Qv(J)}

g M ng M ny
=1} Z ZP 2 2 Z Z A5 Dmewr (R) D (mhy i ( R)Qotn@vin)
Pl Ml gml knul Yol fmm]l

and

M n,
V(@) = igl gll.Qfm

hence, oomparing terms,

Z 2 1 DP(m)G(H(R)DMth)(R) =2 dvaaih (9'5'4)

P=1 Mml

Since D"(R) is orthogonal

M n,
21tg}D:(..:-m(R)D:wam(R) 2 ED (e (BRY{DRY} s uenr
= "pndm-

and multiplying eqn (9-5.4) by Dj)e(R) and summing over ¢ and %,
we obtain:

M n M ng n
3 3 4D o RVosdms = 3 3 1D toe(R) e

A1 i
o ADvn(R) = 4 D%avn(R)-
So that if x # v and consequently A, +# 4,, then
Diwwn(R) =0
and we have shown the truth of eqn (9-5.3).

Thus DNR) (0] [0]
[0] DXYR) [0
CDY(R)C = D™R) =| [0 [0] D¥R)

with the same block form for all R, where D"(R) is a n, xn, matrix
associated with 4, which represents R in the representation I'". [0]is a
rectangular array with all the elements zero. It turns out (see the
next section) that the D"(R) can be assumed to be irreducible repre-
sentations for the point group concerned.
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Our previous example of three nuclei at the corners of an equilateral
triangle (their equilibrium positions) belongs to the @y, point group
end eqn (9-4.6) can now be written as:

D™Gy) =
D4cy) 0] (03 (0] (0] (0]
(01 DF(Cy) (0] (0] [o] (0]
[0] (0] D¥(Gy) [0} (0] (0]
Y {0} [0  D*(Cy) (0] (el
(01 (01 (0] [01 D*"(G) [0]
(0] [0] [0 (o1 [0] DF(Cy)

There are similar equations for the other operations of the point group.}
Therefore, @, forms a basis for the 4 representation and is a vibrational
normal coordinate, @, and @, together form a basis for the I'*' repre-
sentation and they are also vibrational normal coordinates, the rest
correspond to 4 = 0 and are translational or rotational normal co-
ordinates, @, and @; belong to '), @, to I'*Y, @, to I'"" and @, and
Q, to X",

9-6. The classification of normal coardinates

We are now in the position of being able to determine the irreducible
representations to which the different normal coordinates belong.
From this knowledge it will be possible to find out which of the funda-
mental frequencies are infra-red or Raman active. The reduction of I'?
{which is equivalent to I'"} gives

=T =M. el™1gIt=0I"@It

where I'* corresponds to the translationsl and rotational normal
coordinates (A = 0) and I'" to the vibrational normal coordinates. Of
course, in the above sequence some of the I''s may be the aame even
though the normal coordinates correspond to different A’s; there is no
reason why more than one set of normal coordinates should not belong
to the same representation. As was mentioned before, we will assume
that I, T'%,... ' are irreducible representations, that is we will
ignore the possible oceurrence of accidental degeneracies where the 1’s
are equal not because of symmetry but because a fortuitous set of

1 To assign to the individual blooks the correct symmetry species, one simply finds

the character of each block for each R and compares the result with the @,y character
table,
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force constants B,; exists. On the other hand I'* will be reducible.
From the characters y°(R), z**(R) we can find z"(R) by using
z"(R) = x°(R)—x**(R)

and from the standard decomposition formula (eqn (7-4.2)) we can
then find the number of distinct fundamental levels and their de-
generacies. The irreducible representation I'” which is generated by
Q.0 (si =1, 2,... n,) is called the symmelry species of the coordinate(s)
Qw0 (§ =1,2,... ) and it determines the vibrational selection rules.

There are simple formulae for finding the character of I'®, which can

be written as av
2(R) = 3 DUR).

In the first place, only the nuclei which are unmoved by R can contribute
to the diagonal of D°(R) and, referring to § 5-2, for these there is a
contribution per nucleus of:

R | E c(9) o S(6) i
#R) | 3 1+200s6 1 _1+2cosf —3
Since E = C(2w), o = §(2n) and i = §(n), we can abbreviate things
even further and put
2°(R) = npx(R) (9-6.1)
2(R) =1+20088 for R = C(6)
Z(R) = —1+2c088 for R = S§(9)

ny = number of unmoved nuclei.

It is also quite straight forward to determine the character of <,
For a non-linear molecule there are three translational normal co-
ordinates and three rotational normal coordinates and we write
I'*" = I'*@®I*. The translational motion corresponds to a displacement
of the moleculs in some arbitrary direction and it can be depicted by a

single vector showing the displacement of the centre of mass. Let this
vector be

where

ze, +ye, -} ze,
(z, ¥, and z are Cartesian coordinates). We have shown before that a
symmetry operation will transform this vector to
z'e +y'e,+2'e,

where z', y’, and 2’ are certain linear combinations of z, ¢, and z. Thus
the three translational coordinates will generate exactly the same
representation that is generated by position vectors in physical space
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and we conclude that the set of coordinates z, y, and z forms & basis for a
three-dimensional representation of the point group; we call this
representation I'" and x*(R) will be identical to the y(R) given below
eqn (9-6.1). The irreducible representation(s) to which z, y, and 2
belong are usually given in the character tables.f But note that ‘z; y’
in a character table has a different meaning from ‘(z, y)’; the absence
of parentheses indicates that = forms a basis for a one-dimensional
irreducible representation and y forms a basis for the same irreducible
representation as z, while the presence of parentheses indicates that =
and y together form a basis for a two-dimensional irreducible repre-

sentation.

(a) Y

Fig. 9-6.1, Effect of a roflection on (a) a position vector; (b) an axial vector.

We must also find the symmetry species of the rotation and we
follow the treatment given by Levine. An arbitrary rigid rotation of
the molecule can be resolved into rotations by various angles about the
three translational axes z, y, and 2. We can represent the rotation
about the z axis by a single vector R, pointing along the x axis. The
length of R, is proportional to the angle of rotation and its direction is
given by the direction the thumb points when the fingers of the right
hand curl in the direction of rotation. The effect of any symmetry
operation on the nuclear displacement vectors of a rotation defines its
effect on R,. Thus, the C, rotation about the z axis sends the displace-
ment vectors for rotation about the z axis into their negatives, thereby
reversing the direction of this rotation; hence R,, whose direction is
defined relative to the direction of rotation is reversed in direction.
Reflection in the yz plane o,, has no effect on the displacement vectors
for rotation about the x axis; hence R, is unchanged by this symmetry
operation. Thus the effect of @, on R, differs from its effect on a vector
pointing along the z axis and representing translational motion; the
latter vector is changed to its negative by o,, (see Fig. 9-6.1). Vectors

+ Proper orientation of e,, €, and e; will ensure that I'* is in reduced form.

Molecular Vibrations 181

like R, are called axial vectors or pseudo-vectors. The symmetry
operations transform each of three axial vectors representing molecular
rotation about the x, y, and z axes into linear combinations of one
another, thereby generating the representation I', which corresponds
to the molecular rotational modes.

The characters of I'" are related to those of I'. Consider first the
effect on, say R,, of a C(6) rotation about some axis, not necessarily
the z axis. This rotation will move the rotation displacement vectors in
such a manner as to transform R, into a vector R., where R, is the
vector obtained by applying C(8) directly to R,. Thus, for proper
rotations, the matrices describing how R,, R,, and R, transform are
exactly those matrices that describe how ordinary position vectors
along the z, y, and z axes transform; the matrix in the representation
I¥ corresponding to any C(0) is therefore the same ag the matrix in I'*
that corresponds to C(f) and the characters for proper rotations are
the same for I'¥ as for T'*.

Now consider the effect on R, of a S(#) operation. We have

S(8) = oC(8).

The C{0) part has the same effect on R, as on a translational vector

along the z axis. However the effect of a reflection on R, is opposite

to its effect on a translational vector along the z axis. Thus the matrices

describing the effect of S(fl) on the rotation vectors are the negatives of

the matrices describing the effect of $(6) on the translational vectors.

The character of any S(6) for I is the negative of its character in I'.
Summarizing, we have:

x{C(0)} = x*{C(6)}
2(S(6)} = —{S(6)}
2% (R) =2(1+2cos6) if R = C(8)
x5 (R) =0 if R = S(8).
If we return to our equilateral triangle example and apply the above
rules, we obtain the numbers in Table 9-6.1. Using this table in con-

junction with the @,, character table (Table 9-7.2) and the decom-
position rule:

E
@ =g T PRI R — g 3 gaXCp(Cy*
Tt = I‘E’ ) I‘An'
't =T'4 ¢ I'¥
'y = I @ I'F,

we obtain

and
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TAaerLE 9-6.1
Characters for the I'® representation of the Ps;, point

group
B E 2C, 3C, o, 285, 3a,
(Cy) 9 [ -1 3 [} 1
f‘,(c‘:) 3 ] -1 1 —~2 1
2(C) 3 0 -1 —1 2 -1
2"(Cy 3 0 1 3 0 1

9-7. Furthar examples of normal coordinate classification

In this section three more examples of normal coordinate classification
are given. We consider (1) H,0, (2) CO3™ and (3) CH,.

(1) The character table for the point group of H,0O €, is given in
Table 8-7.1 and below it we show the characters for the I'® represen-
tation (found from eqn (9-6.1)). From these characters we obtain

I =3 @ s @ 25 @ 3T5,

As ia usual practice, the representations for I and I'™ are also given
in the character table and we directly obtain
t=Irerserh
and I* = I @ I'" @ TP
Hence, by subtracting these from I'® we have
v =2 @ P,

So that there are three distinet (having different A’s or »’s) Eon-degener-
ate vibrational normal modes with symmetry species I'"* (two) and
5 (one).
TaBLE 9-7.1
Character table for €,.}

€5 E G, Oy o,
4, =z 1 1 1 1
4, R, 1 1 -1 -1
B, =B 1 -1 1 -1
B, wiR 1 -1 -1 1
#C)-HO0 9  —t 1 3

t+ oy = 0, {(porpendicular to the molecular
plane); g, = d,, (molecular plane).
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TABLE 8-7.2
Character table for Py,

Dan E 2C, 3C, on 28, 3oy
A, 1 1 1 1 1 13
Ay R, 1 1 -1 1 1 -1
E {z. v) 2 -1 ] 2 -1 0
AT 1 1 1} —1 -1 -1
A z 1 1 —1 —1 -1 1
¥ o {R.. R,) 2 -1 0 -2 1 o

x2°(C)-COoy~ 12 0 —2 4 —2 2

{2) The character table for the point group of CO} (2,,) is given in
Table 9-7.2 and below it we show the characters for the I'® represen-
tation. From these characters we obtain

I = I @ I'Y @ 3I'Y @ 2" @ ¥

and, by inspection of the table,

It = ¥ g D4v

I™ = I @ T,
'Y = 4 @ 2 D T4s”
and there are two distinct non-degenerate vibrational modes of species
' and I' and two distinct doubly degenerate modes with the same
symmetry species I'F’,

(3) The character table for the point group of CH, (7,) is given in

Table 9-7.3 and below it we show the characters for the I'* repre-
sentation. From these characters we obtain

" =TI%gI¥*gI' @30
and, by inspection of the table,
It = I's

and

Hence

TABLE 9-7.3
Character table for T4

Fa E 8C, 3C, es, Baa
A, 1 1 1 1 1
A, 1 1 1 -1 -1
E 2 -1 2 0 0
T\ (R,, R,, R) 3 1] -1 1 -1
Tz v, 2) 3 0 -1 -1 1
2*(C)-CH, 15 0 —1 -1 3
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and I = 7.
Hence v = M @ I'F @ 27

and the nine vibrational normal coordinates {or modes) can be claasified
as follows: one gives rise to [, two are doubly degenerate and give
rise to I'F, three are triply degenerate and give rise to [7s, and the
last three give rise to the same representation I'Ts but with a different
A (or ») value from the previous one.

9-8. Normal coosdinates for linear molecules

Linear molecules belong to the €., point group if they are un-
symmetrical and to the @, point group if they are symmetrical. Once
again they are special cases and we will only state the results. There
are two kinds of normal coordinate for linear molecules: longitudinal,
in whioh the nuclei have undergone longitudinal displacements slong
the molecular axis and transverse, where the nuclei have been displaced
perpendicularly to the molecular axis.

For an unsymmetrical linear molecule there are N —1 non-degenerate
vibrationsal normal coordinates belonging to the symmetry species I+
(see Table 7-8.1) and they are of the longitudinal type; and N —2 pairs
of vibrational normal coordinates (doubly degenerate), each pair
belonging to the II symmetry speciea and they are of the transverse
type.

For symmetrical linear moleculea, if there is an even number of
nuclei, there are N/2 vibrational normal coordinates belonging to =,
N/2—1 belonging to £, (these are of the longitudinal type) and there
are N/2—1 pairs belonging to I, and Nj2—1 pairs belonging to I,
(these are of the transverse type). If there is an odd number of nuclei,
there are (N —1)/2 vibrational normal coordinates belonging to 2! and
(¥ —1)/2 belonging to T+ (these are of the longitudinal type) and
(N —3)/2 pairs belonging to M, and (N —1)/2 pairs belonging to II,
(these are of the transverse type).

9-9. Classification of the vibrational levels

Classifying the vibrational energy levels means finding out to which
irreducible representation of the molecular point group the vibrational
wavefunction(s) associated with a given level belong.

First let us consider the vibrational ground state. The corresponding
wavefunction is (see eqn (9-3.9))

aN—-s
v’x“’ =N exp(—i 2 G{Q!)
foml
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which, written in the style of § 9-5, becomes
M- "

vib __ g
va" = Nexp(—t 23 «, 3 &om) (8-9.1)
where ot
2% 472
% = 5 =5

;Indtzi the sy’mmetr‘y operation R the normal coordinate @, is trans-

s?;; tht;o me“‘;i‘lich is a linear combination of Q,u),.: Qpin,y and
ge coordinates form a basis f : L fine

sentation, we have or the pth irreducible repre-

Qo = MZ-ID;M(R)QP(m) (9-9.2)

which is the ‘reduced version’ of e

: i - qn (9-4.3) and where D”(R) is the
ma.tl:x representu?g R in the pth irreducible rapresenta.tion)of the
point group to which the molecule belonga. Since the D*(R) are orthog-

onal, the individual
onal, vidual blocks, e.g. D’(R), must also be orthogonal and

2
Q#(m} =21D:5(R)Q:»(h)» (9-9.3)
If we substitute eqn {9-9.3) in eqn (9-9.1), we find

M-1

wh(Q) = N eXP(—i S f. 3 3 DER) DI R i@t

] fam] Keml
- - (9-9.4)
where the @ in y}™(Q) indicates that the wavefunction take the values

of the normal coordinates before th . _
Since DP(R) is orthogonal e symmetry operation R is applied.

.4
2 DIn(R)DEn(R) = 8y
and we can replace eqn (9-9.4) by

"y

o . M-1 n
Q) =N exP(—i"zl %, é l"le;(i)Q;(t))

F=1 Jemm
M1 ”
=N exp(—;gl 2, ilq;'m) — PN, (9-9.5)

Ea;v:) define the symmetry transformation operator O, in the usual
¥ 0x43™(Q") = ¥i"™(@),
we have from eqn (9-9.5)
0,9;"™(Q) = v3™(Q')
Oy’ = y3'® (all R).

or
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Consequently ¢3® generates the identical representation I'' of the
point group and we say that the ground state vibrational wavefunction
is totally symmetric.

The fundamental vibrational energy levels lie at an energy Av, above
the ground state. Each level has associated with it a certain fundamental
frequency v, and therefore a certain A value i, and each 4, has associ-
ated with it », normal coordinates @, (m =1, 2,...n,). Coupled
with each of these normal coordinates there is a vibrational wave-
function %, which is proportional to ¥)"Q,() (see eqn (9-3.11)). Thus
the fundamental levels have an n,-fold degeneracy; that is there are n,
wavefunctions having the same energy.

If we write these degenerate wavefunctions as

V(@) = Ny (@@ m=1,2,.. 7,
where N is a normalization constant, and substitute eqns (9-9.3) and
(9-9.5) we get

Va(@) = Nyi™@) 3 DinRIQw = 3 Din(RIVQ).

Hence

0, v5n(@) = ¥a(Q) = élbim(mwz(@')

and
fp

Ogyi = X Di.(R)vi.
o

Therefore the wavefunctions v, (m = 1, 2,... n,) form a basis for the
irreducible representation I'’, the same representation to which the
normal coordinates Q,u)-.. @,(», 8ssociated with the fundamental
frequency v, belong.

This result is tremendously useful, it not only leads to selection rules
for vibrational spectroscopy but also, as was the case with electronic
wavefunctions (see § 8-2), allows us to predict from inspection of the
character table the degeneracies and symmetries which are allowed for
the fundamental vibrational wavefunctions of any particular molecule.

9-10. infra-red spectra

Ifincident radiation with a frequency equal to one of the fundamental
frequencies falls on a molecule, it may make a transition from the
ground state to the appropriate fundamental level. These normal
frequencies usually occur in the infra-red spectral region. The prob-
ability of such a transition occurring, however, depends on the relation-
ship between the molecule’s electric dipole moment (as a function of
the nuclear coordinates) and the wavefunctions of the ground state and
of the fundamental level,
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Consider a set of mutually perpendicular axes (specified by the
vectors e;, e, and e,) with their origins at that point in the molecule
which is unmoved by all the symmetry operations of the point group
and let us refer the position of any nucleus to a set of axes (parallel to
e,, &,, and e,) whose origin is at the equilibrium position of the nucleus.
Then the electric dipole moment of the molecule when the nuclei and
electrons are in positions described by some configuration X, is the

vector p(X)e, +mn(X)ey+ s X)e,

where N

(X)) = 213:3’
D

and z? is the coordinate of the pth nucleus in the direction of e, and
¢” is the effective charge on the pth nucleus.

Quantum mechanics tells us that the probability of an electric
dipole induced transition occurring between the states described by
v, and y,, is proportional to

3 vimon )

where the integration is over the whole range of the nuclear coordinates.
Consequently & transition from the vibrational ground state to the pth
fundamental level is forbidden (has zero probability) if

| i dr = 0

for all m values (1, 2,... #,) and all ¥ values (1, 2, and 3). The vectors
e,, €,, and e, generate the same representation T as the translational
normal coordinates and therefore

3
Re, = 3 Di(Rle,

Sl

and it can easily be shown that
S
Oppis =‘Zl Di(R)p, k=123

Therefore the u,(X) form a basis for I''. There will be a particular
choice of axes e,, e;, and e, which will reduce I'* to the irreducible
representations which it contains and this choice is the same as the
choice of translational axes which reduces I'*. Therefore u, belongs to
the same irreducible representation as x, u, belongs to the same one as
y and u, belongs to the same one as z, and these can be found by
consulting the appropriate character table.
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Since yi® belongs to I't and yh belongs to I'’, the conclusions of
8-4 dictate that
§ f vib® f‘k'P:l d.r =0

unless I’ coincides with the irreducible representation to which gy,
belongs. We can therefore obtain the selection rule which governs the
transitions from the ground state to the fundamental levels: v, is only
infra-red active if its symmetry species I'” is the same as one of the
irreducible representations contained in I™.

An alternative but not so general selection rule (it is restricted to
the harmonic oscillator approximation) is that fyJ™* 4, w5, dr is zero if
Ou,/0@h (evaluated for the equilibrium nuclear configuration) is zero,
i.e. if there is no linear dependence of the dipole moment on the normal
coordinate Q2.

This selection rule may be found by making a Taylor series expansion
of (X)) in the normal coordinates Q,, @,,... @;x_¢ (We revert to our
initial notation}:

o= ui+ Z( )Q;+ k=123

where the superscripts indicate evaluation at the equilibrium configur-
aN—¢

ation. If the vibrational wavefunctions are written as JI v,(»,, @.)
{m1

where n, is the ith vibrational quantum number, then the ground state
wavefunction is IN—8

3 =TT 0. Q)

and the wavefunctions for excited states in which only one vibrational
guantum number is non-zero are

aN—6
Ym = ‘];!.;'P((O’ Q()}w’u(”m’ Qu)'
[ wdd. Qr*vik. Q) dQ, = 3,

(the harmonic oscillator functions are orthonormal) we have
J‘wvlb.'ukw dT —

- m{H [#40. 01940, 00 0 [ 9a(©. Q) * vl @) dQu+

Since

+;¢2m (gg:) {;i{j‘ vi(0, @)*v (0, Q) dQ;} X
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x f il0, QI*Qupi(0, @) 40, f (0, @) Pl @) AQ+

+ (BT (TL 910, 02704020 90) 000,00 0 024

+higher terms, (9-10.1)
and if n,, # 0 the first two terms and the higher terms are zero and

[ dr = (ng) [0 @u*Qupnr @) 4@
kEk=1,2,8

e, \C
and hence, if (gg") = 0, the probability of the transition from the

ground state to the excited state occurring is zero, i.e. for the transition
to take place the dipole moment must change linearly with the normal
coordinate @,,,.

Since vy, (0, @,)@,, is proportional to w,(l, @,) and the functions
Ym(ms @) are orthogonal, it is clear that

J‘ 'Pm(O) Qm)'Qm’Pm(”mv Qm) dQ“ = 0

unless n,, = 1. Hence only transitions to the fundamental levels are
allowed from the ground state. This is strictly true only within the
approximations we have been making and, in reality, transitions to
overtone levels (n,, = 1) do take place (see § 9-13).

Furthermore, transitions from the ground state to excited states for
which more than one vibrational quantum number is non-zero are
forbidden, e.g. if n, % 0 and n, # 0 in the excited state, then either or
both of the integrals

{9100, @)*ya(ns, Q1) 4@, and [ (0, Qu)* v, Qu) A0,

will appear in each term of eqn (9-10.1) and henoe the probability of
the trangition is zero. Again this is only strictly true within the ap-
proximations we have been making and transitions to so-called com-
bination levels do in actual practice occur (see § 9-13).

9-11. Raman spectra

When an incident beam of radiation of frequency » falls on a mole-
cule, some radiation is scattered and in this scattered radiation we get,
as well as », frequencies v -», where v, is a fundamental frequency. This
is called the Raman effect and when a fundamental frequency appears
in the Raman spectrum it is said to be Raman active,
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An incident radiation field with an electric vector E induces a dipole
moment M in a molecule. The components of M are:

3
M, =3 a.B,; k=1,2,3
where =1
E = Z.e,+E.e,+E.e,
and k — 1’ 2’ 3
Ky == %Lk j=1’2!3

and oy, ®ss, X35 K13 %13, a0d &y define the polarizability of the molecule.
The latter are transformed by the symmetry operations R in the same
way as i, X3, ¥y, ¥,%,, £,%s, and 2,7, where z,, ,, and z, are the co-
ordinates of a point in physical space (see Appendix A.9-3). The six
polarizability functions generate a reducible representation which we
will call I'* and the character tables give the irreducible representations
to which =} (or 22), z} (or y%), x5 (or 2%), 2,7, (OT ZY), 2,%, (OT X2), T,Ts
{or yz), or the necessary combinations, belong and therefore give the
decomposition of I'*. For example, for CH, (9 ,) ?+y* +2? belongs to
41, 22222 —y2 and z?—y? to T'F and 2y, 22, and yz to I''*, hence

“=r4erferm
Quantum mechanics tells us that the probability that Raman
scattering involves the fundamental frequency », depends on the
integrals
t =123
J"I’x‘b*“u'l’:- dr j=123
m=12,..m,

and therefore v, is only Raman active if I'® coincides with one of the
irreducible representations contained in T (remember that 7"
belongs to I'%). This rule is equivalent to saying that », is only Raman
active if the polarizability changes during the pth normal vibration.

In a molecule with a centre of inversion, the irreducible represen-
tations in I are of u-type and those in I'™* are of g-type and since I'”
cannot coincide with both a u- and 2 g-type irreducible representation,
no fundamental frequency for this type of molecule can be both infra-
red and Raman active.

9-12. Tha infra-red and Raman spectra of CH, and CH,D

In this section we will determine the differences in the infra-red and
Raman spectra of methane CH,; and monodeuteromethane CH;D by
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finding the number of active fundamentals and their symmetries for the
two molecules.

CH, belongs to the J7, point group (the symmetry elements are shown
in Fig. 3-6.2) and the reduction of I'° was carried out in § 8-7 (3) with

the result that I'* =TI g I'f @ '™ ¢ 377,

Furthermore, inspection of the character table shows that

&Dd — I‘T"

and hence I —

Also from the character table in Appendix I, we have
I =TI4geI¥gI,

So that the non-degenerate fundamental level which belongs to I
will only be Raman active (I'"* is contained in I'"* but not in "), the
doubly-degenerate fundamental level which belongs to I'? will also
only be Raman active (I'* is contained in I but not in ™) and the two
triply-degenerate fundamental levels which belong to I'”* will be both
infra-red and Raman active (I'”* js contained in both I'* and I').

CH,D belongs to the ,, point group and the C—D axis is the O, axis.
The characters for the I'® representation may be found by using eqn
{9-6.1) and they are

sy | E 2C, 3a

v

£(C) | 15 0 3

These characters together with those of the irreducible representations
of the point group may be fed into eqn (7-4.2) and the reduction of I'*
carried out, when this is done we obtain

e — 4“4 @ ' @ 5TF
and since by inspection of the character table
" =r4gre
and I¥ = I g ¥
we have Y — 30 @ 3%,

F
urthermore, I — 2 @ 2%,
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Therefore the three non-degenerate fundamental levels belonging to
I'“t are both infra-red and Raman active and the three doubly degener-
ate fundamental levels belonging to 'Y are also both infra-red and
Raman active.

So for CH,D the number of fundamental frequencies which appear
in the infra-red spectrum and the Raman spectrum are the same,
whereas for CH, this is not so. This is sufficient information to dis-
tinguish between the two molecules.

9-13. Combination and overtone levels and Fermi resonance

If it is possible to excite two normal modes simultaneously then a
transition can occur to what is called a combination level. Such a level
will be characterized by a set of vibrational quantum numbers which
are all zero except for two which are unity (see eqn (9-3.6)); it will lie
at an energy of k(v,+»,) above the ground state where v, and v, are
the relevant fundamental frequencies. The corresponding vibrational
wavefunctions will be of the form

1 =1,2,... n,

Nyi™@)€, 0@ ji=12..m,

and as there are n,n, products of @, and @,,;, the combination level,
in the harmonic oscillator approximation, will have a degeneracy equal
to n,n,. The nn, wavefunctions for a given combination level, taken
together, will form a basis for the direct product representation I’ ®I'”.
This representation will, in general, be reducible. There will therefore
be combinations of the functions NyJ(@)Q,,@usy Which will form
bases for the irreducible representations contained in I'’®I". In the
harmoniec oscillator approximation these combinations are all degener-
ate; however, if anharmonic terms such as
3V 3N BN P

%Z Z’ Z (aq‘ aq, oq, nqa'QiQh

are included in eqn (9-2.7), then this degeneracy is lifted and in place
of a single combination level there will be a group of levels with energies
approximately k(v ,+»,) greater than that of the ground state and there
will be one such level for each irreducible representation contained in
I'’®I° (see § 8-3). If any of the irreducible representations coincide
with those found in I'* or [” then a frequency approximately equal to
»” 447 will occur in the infra-red or Raman spectrum. Since these
transitions are forbidden in the harmonic oscillator approximation they
will be weaker than the fundamental ones.
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An overtone level is characterized by a set of vibrational quantum
numbers which are all zero except one which has a value greater than
unity, say m. If the quantum number which is non-zero corresponds to a
fundamental frequency v,, then from eqn (9-3.6) we see that the over-
tone level will lie my, above the ground state. It can be shown that if
the pth fundamental level is non-degenerate then for m even the
overtone level belongs to the totally symmetric representation and for
m odd it belongs to the same representation as the pth fundamental
level. If », is degenerate, then the symmetry species of the overtone is
difficult to determine and once again anharmonic effects destroy the
degeneracy predicted by the harmonic oscillator approximation and
new levels are created which belong to some definite symmetry species.
Though the probability of a transition from the ground state to an
overtone level is zero in the harmonic oscillator approximation, the
probability can be quite high when anharmonic terms are taken into
account.

If an active fundamental level happens to lie close to an overtone
or combination level with the same symmetry species, then anharmonic
terms in the potential V (see eqn (9-2.4)) will have the effect of mixing
the two levels. Two new levels will be produced whose wavefunctions
consist of approximately equal amounts of the wavefunctions belonging
to the fundamental and the overtone or combination level. In such
circumstances rather than having one strong (fundamental) and one
weak (overtone or combination) transition there will be two strong
transitions lying close together in energy. This phenomena is called
Fermi resonance.

Appendices
A.9-1. Proof of sqns (9-2.17) and (9-2.18)
We have: . N s8N v
29 -3 (2oa)(20a)
=] fml \ faml Jem=1
3N 3N s/aN
=23 2 (Z CJ:'CH) Q-
Ja=1 k=l \ f=al

But since C is orthogonal
N
2 0l =8,

funl

and
N 3N 3N .
SR =2 2udds
]l Jum] =1
aN
=3 d;
J=1

and hence we obtain eqn (9-2.17).
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From eqn (9-2.13) we can get

Z CosBas = ALy
and hence IN BN /3N
30 = 3 3 (S 10,0u0)ea
=1 F=)l el \wml
3N N (IN AN

->3(> zo,.B,,c.') 20

frl kel il gl
3N N

2 ( Z 3, u) 242
J—l =1
which proves eqn (9-2.18}.

A.89-2, Proof that D (R) = C'D*(R)C
We have, by definition,

Re,— 3 D%R)G, §=1,2,..,3N (A.9-2.1)
and :\r
Q= ,g,o“q‘
or

N
q, = z (o_l)mtom
m=l
N
=30,.0. (A.9-2.2)
m=1
(C is orthogonal). Substituting eqn (A.9-2.2) twice into eqn (A.9-2.1), we have
3N NV N
Z c’thOk = 21 D?i(R) zlclmom
F= R
N
E Ca Z DI(R)Q, = zl Di(R) Zlc'amQ,..
ka=l m=—
and by equating the coefficients of the Q’s:

IN N
L_E! CuDR(R) = E D?((R)le

L)

aN 3N
2. DR(RYC ) = 3 (C7),Di(R)
=1 =1

and hence DYR)C = CD(R)

and D(R) = C-LD(R)C.
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A.9-3. Symmetry properties of polarizability functions

Let R transform the nuclear—electronic configuration X to X’ and the
electric vector E to E’, then

]
E = Z E“e,

{mml

3
= E; Ele,

and .
=3D,.(RE, m=1,2a3.
=1

3
M{X') = 3 anX)Ein

3
=m2_1¢m(x');;Dm(R)E,

and s

M (X) = 3 Dy(R)M(X')}
therefore, ‘:i s s

M (X) ='§ Du(R) ”.Z_lﬂtm(x ") ngmJ(R)E"
But s

M(X) = Za,,,(X)E,

o (X) = Z Z D, (R)D,,(R)a,, (X")

fel mal

and since, by definition of O,

Opoy (X') = 04,,(X)
we have

Op (X') = Z 2 Du(R)Dm(R)am(X )-

f=1 mm=1
Now consider the functions
Jos(21 24, 73} = mp,

it is easily shown that

3 3
Onfus(z1, 23, 73) = E Z Dp(R) D, (R) [y 21, 4, 73)-

Therefore the effect of Og on a polanza.bthty function «,, is the same as its
effect on z,x,.

PROBLEMS
8.1. For ethylene:
(a) determine the point group;



9.2,

9.3.

9.4.

2.5.
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(b) determine the number and symmetry of the vibrational normal co-

ordinates;
(¢) determine the spectroscopic activity of each fundamental level.

Show on the basis of infra-red and Raman spectra that it is possible to
distinguish between the two crown forms of octachlorocyclooctane, one in which
the hydrogen atoms are all equatorial (2,,) and the other in which the hydrogen
atoms are alternating between axial and equatorizl positions (€,,).

Discuss how the cis and ¢rans isomers of N,F; can be distinguished by infra-
red and Raman measurerments.

What will be the infra-red and Raman activity of the four fundamental
levels of CO3?

Determine z° and carry out the reduction of I'® for the following molecules:
(o) NHjy (€,,),

(b) XeOF, (€,y),

(c) PtCIF~ (P,4,),

(d) trans-glyoxal (€x,).

10. Molecular orbital theory

10-1. Introduction

In this chapter we will consider how to apply a knowledge of sym-
metry and its ramifications to the determination of electronic wave-
functions. We will do so by looking at a particular kind of approximate
electronic wavefunction for conjugated molecules. The Schridinger
equation for the electrons of a molecule, our starting point, is just as
hard to solve as the Schrodinger equation for the nuclei. In the latter
case we were able to find approxzimate solutions by replacing the true
potential energy V with a sum of quadratic terms in the nuclear
coordinates (3>, 3 B,.q.9,). In dealing with the electronic case we must,

i J

for example, for a molecule like benzene, make a whole series of fairly
drastic approximations, First we consider the electronic wavefunction
to be made up of molecular orbitals (approximation 1), then we restrict
the form of the molecular orbitals (MOs) to linear combinations of
atomic orbitals (approximation 2), then we separate out the part of the
wavefunction concerned with o-electrons and deal only with the
w-electron part (approximation 3), finally we solve the appropriate
equations by making assumptions about certain integrals over the
w-electronio MOs (approximation 4). The final step brings us to the
Hiickel molecular orbital method, which is familiar to all chemists.

Symmetry enters the approximate solution of the electronic Schré-
dinger equation in two ways. In the first place, the exact MOs are
eigenfunctions of an operator which commutes with all O, of the point
group concerned, they therefore generate irreducible representsations
of that point group (see Chapter 8) and can be classified accordingly.
The same is true for the approximate MOs and consequently one
constructs them from combinations of atomic orbitals (symmetry
orbitals) which generate irreducible representations.

In the second place, the Hamiltonian operators which occur and
commute with all O, belong to the totally symmetric irreducible
representation I'' (see Appendix A.10-3) and integrals over them
Jw™ Hy" dr vanish unless I — I'* (see eqn (8-4.5)). Thus, in carrying
out an approximate solution of the electronic Schridinger equation,
changing to a set of basis functions which belong to the irreducible
representations will allow us, by inspection, to put many of the integrals
which occur equal to zero. There will also, because of this, be an
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immediate factorization of the equations. Two examples, benzene and
the trivinylmethyl radical, will be considered in detail.

10-2. The Hartree—~Fock approximation
The starting point for any molecular electronic problem is the
electronic Schridinger equation:
HY¥(1,2,...n) = E¥Y(1, 2,... n).
In this equation H, the Hamiltonian, is defined by precise quantum
mechanical rules and can be written in atomic units (Appendix A.10-1) as

” ” LJ
H = 2h,+ > 3 1, {10-2.1)
pml A=l v>u
where N
h, = —}V:— z Z,/r”. (10-2.2)
a=1

In eqns (10-2.1) and (10-2.2) n is the number of electrons in the molecule

" ®
r,, is the distance between electron x and electron v, 3 3 1/r,, is the
Al v g

potential-energy operator due to interactions between the electrons,

V; is a Laplacian operator involving the coordinates of electron 4,

—13V; is the kinetic-energy operator (in atomic units) for electron u,

r,. i8 the distance between electron u and nucleus «, Z, is the charge
N

on nucleus « and — 3 Z_/fr,, is the potential-energy operator arising

Q=l
from the interactions of electron g with all the ¥ nuclei.

¥(1, 2,... n) is the electronic wavefunction and explicitly is a
function of the coordinates of all # electrons; in this notation the
coordinates of a given electron are symbolized by a single number. E
is the total electronic energy of the molecule.

The Hartree-Fock (HF) method, or self consistent field (SCF)
method as it is sometimes called, approximates ¥(l, 2,... n) by ex-
pressing it solely in terms of functions each of which contains the
coordinates of just one electron; these functions are called molecular
orbitals (MOs). This is an approximation because in reality the position
of one electron is always correlated with the positions of the others, so
that the function which describes a given electron cannot be independ-
ent of the functions describing the other electrons. It is for this
reason that the error in the electronic energy in the HF approximation
is called the correlation energy.

The actual way in which the MOs are put together to form

¥(1.2,... n)
is restricted by two fundamental laws. One is that an electronic
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wavefunction must not distinguish, by treating in a different manner,
one electron from another; thisis the law of indistinguishability of identi-
cal particles. The other law is that the electronic wavefunction must
change its sign when two electrons are interchanged; this is the anti-
symmetry law and in fact it leads to the Pauli exclusion principle.

Both these laws are satisfied by expressing W (1, 2,... n) in terms of
the MOs with a Slater determinant:

@) Oy(L) ... B
D,(2) Pu(2) ... D.(2)
W(1,2,...0) = 1fa/n!| - . <. (10-2.3)

D,(n) Dyn) ... O.n)

In this determinant ®,(j) symbolizes the ith MO as a well-defined
function of the coordinates of electron j; we say that electron j is
occupying the MO @,. If the determinant is multiplied out there will
be n! terms and each term corresponds to one of the n! permutations of
the n electrons amongst the n MOs; since all permutations are included,
every electron is treated equally and the indistinguishability law is
satisfied.

If two electrons are interchanged then, for a Slater determinant, this
is equivalent to interchanging two rows and if two rows of a determi-
nant are exchanged it changes sign, hence the antisymmetry law is also
satisfied, e.g. if we exchange electrons 1 and 2, we get

Di(2) Dg(2) ... D,(2)
D, (1) De(1) ... D)
¥(Z, I,... n) = (1/4/nl) .
Dy(n) Di(n) ... D,(n)
D,(1) Ofl) .. D(1)
Di(2) Du(2) ... DL (2)
= —1f+/n! :
Dy (n) Dy(n) ... D,(n)
= —W(L,2,... m).

+ This equation is often abbreviated as
¥(1, 2,... n) = |@(1)D(2)D,(8) ... ,(n)].
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That ¥(1, 2,... n) necessarily satisfies the Pauli exolusion principle is
evident from the fact that if two MOs are absolutely identical (including
their spin components), then so are two columns in the Slater determi-
nant and a determinant with two identical columns is zero.

The 1/4/n! factor preceding the determinant takes account of
normalization, since if the MOs are orthonormal, this factor ensures

that j..._”"lf*(l,z,... ¥ (1,2,... n) dry dry ... dr, = 1.

The way in which the Hartree~Fock MOs are determined is by using
the variational method, that is the form of each MO is varied until the
integral {...fJ¥*(1,2,... n)H¥(1, 2,... n)d7r, dr, ... d7, is as low as
possible:

s {f...”‘lf*(l, 2,... )H¥ (3, 2,... #) dry dry ... dr,} = 0.
(10-2.4)

We will call the MOs that satisfy eqn (10-2.4) with respect to complete
variation in their form the exact MOs.

By introducing eqn (10-2.3) into eqn (10-2.4) it is possible to arrive
at a simple set of n one-electron eigenvalue equations, called the Hartree—
Fock equations:

HG)D (i) = e, B,(5) i=1,2,...n (10-2.5)

where H**(i) (explicitly defined in the next section) is an effective
Hamiltonian operator related to H and involving the coordinates of
electron :. The eigenvalues &, are constants called orbital energies.
Once the MOs have been found, the total electronic energy is obtained
from the equation:

E =f” w1, 2,... n)HY(1, 2,... ) dr, dr, ... dr,,.

Since it can be shown that H°"(s), like the original Hamiltonian H,
commutes with the transformation operators O for all operations R
of the point group to which the molecule belongs, the MOs associated
with a given orbital energy will form a function space whose basis
generates a definite irreducible representation of the point group. This
is exactly parallel to the situation for the exact total electronic
wavefunctions,

The exact MOs may therefore be classified according to the irreducible
representation to which they belong and usually the symbol for the
irreducible representation (in lower case type) is used to label the MO
with which it is associated. For example, for the point group 4, of
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methane & MO might be a non-degenerate ‘e,’ orbital or a triply degener-
ate ‘ty’ orbital ete,

10-3. The LCAO MO approximation

Rather than find the most perfect MOs which satisfy eqn (10-2.4)
(or eqns (10-2.5)), it is common practice to replace them by particular
mathematical functions of a restricted nature. These functions will
generally contain certain parameters which can then be optimized in
accordance with eqn (10-2.4). Since these MOs are not completely
flexible, we will have introduced & further approximation, the severity
of which is determined by the degree of inflexibility in the form of our

- chosen functions. Typical of this kind of approximation is the one

which expresses the space part of the MOs as various linear combin-
ations of atomic orbitals centred on the same or different nuclei in the
molecule. We write the space part of each of the approximate MOs as

o6 = 30400 (m=7) (10-3.1)

where the ¢, are atomic orbitals and the C,, are linear coefficients.

These ®, are called Linear Combination of Atomie Orbitals Molecular
Orbitals (LCAO MOs) and if they are introduced into the Hartree-Fock
equations (eqns (10-2.5)), & simple set of equations (the Hartree—Fook—
Roothaan equations) is obtained which can be used to determine the
optimum coefficients C,;. For those systems where the space part of
each MO is doubly occupied, i.e. there are two electrons in each @,
with spin « and spin # respectively so that the complete MOs including
spin are different, the total wavefunction is

W(L, 2,... n) ={®;(1)x(1) B, (2)8(2) Pa(3)e(3) ... ©pyy(n)B(n} |

and we have the following equations:

EZ‘ (H?:f—-s,Su)C,“ =0

t=12..m (10-3.2)
where
H3P = [ $HOH™(1)$,(1) dr,
. (10-3.3)
8u = [ $1(1)g1) dry
n/2
H*(p) = b+ 3 (2J,(s)— K (1)}
=1 (10-3.4)

N
hll = —%V:_ Z Zﬂ/’na
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Ji(p) and K,(u) are the Coulomb and exchange operator respectively,
and are defined by the equations:

TD(1) = { [ DH2O(2)rsd dryfp(1)
K ()$(1) = | [ O2@)u(2prid dry]@,1).

Non-trivial solutions of eqns (10-3.2) can be obtained provided that
the eigenvalues ¢,, the LCAO MO orbital energies and approximations
to the ¢; of eqn (10-2.5), satisfy the equation

det(H\" —e,8,) = 0. (10-3.5)

With this proviso, eqns (10-3.2) coupled with a normalization equation
can be solved to produce m sets of coefficients (each set corresponding
to a particular MO and orbital energy) from which we can choose /2
which correspond to the lowest orbital energies and to those MOs
which are occupied in the electronic ground state.

The total electronic energy is then

and

E = f...”qf*(l, 2,... )H¥(1, 2,... n) dr, d7y ... dr,,

niz n/2 n/2
=23 ¢&—3 3 (@J,—K,) (10-3.6)
fm1 fum]l Fm]
where
Iy = [[ @007 @) 0,1)0,(2) dr, dr,
and

K, = [[ o} 1)0}eph o 2)0,0) dr, dr,.

An alternative notation for the preceding equations is given in
Appendix A.10-2,

The reader should note that eqns (10-3.2) have to be solved iteratively
since the coefficients C,; appesr in the operators J,(u) and K,(u) and
hence in H*(4) and Hj;*. What is done, therefore, is to guess sets of
coefficients and with them calculate Hj;', then solve eqns (10-3.2) for a
new set of coefficients. These new coefficients can then be used as input
to Hj; and the process repeated until the input and output coefficients
are consistent.

In the above equations, integration over the spin parts of the MOs
has been carried out and the @, refer only to the space part of the MOs.

In the previous section we stated that the exact MOs belonging to a
given orbital energy must form a basis for one of the irreducible
representations of the point group to which the molecule belongs and
the same is true for the approximate MOs. Furthermore, if one ensures
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a priori that the approximate MOs do behave in this way, the caleu-
lations are greatly simplified because the vanishing integral rule comes
into play. The way in which one makes sure that the approximate
MOs form bases for the irreducible representations is by first forming
linear combinations of atomic orbitala which do. These combinations
are called, appropriately, symmetry orbitals and the coefficients of the
atomic orbitals of which they are composed are totally determined by
symmetry arguments. We will write a symmetry orbital as

‘#; = zcrl¢r (10-3.7)
where ¢, is an atomic orbital. The MOs are then formed from the
symmetry orbitals by @, = 3 Ol (10-3.8)

and the coefficients C;, and total electronic energy are determined in
the same fashion as before but with C,, replacing C,; and ¢, replacing
¢.. The simplification which results by doing this will become clear in
§10-6 and § 10-7.

10-4. The =-electron approximation

We now consider conjugated systems and approximate things even
further by focusing attention upon only the w-electrons of such
systems. The valence electrons of conjugated systems fall into two
classes: o-electrons and w-electrons. The o-electrons are assumed to be
fairly strongly localized in individual bonds and described by orbitals
of o-type symmetry (using the notation of linear molecules); they
normally do not participate in those chemical reactions which do not
involve bond breaking and they are regarded as relatively unreactive.
The =-electrons, on the other hand, are highly delocalized over the
carbon framework and play an important role in all reactions; they are
often referred to as mobile electrons. In organic chemistry many of the
properties of conjugated molecules can empirically be ascribed to the
n-electrons alone and this indicates that it is not unreasonable in
quantum mechanics to treat the =w-electrons in an explicit fashion and
to simply regard the o-electrons as providing some kind of background
potential field for them. The quantum mechanical separation of the
electrons of & molecule into o- and w-electrons is known as o—m separ-
ability.

We therefore start the quantum mechanical treatment of conjugated
systems by expressing the total electronic wavefunction in terms of a
wavefunction for the o-electrons and a wavefunction for the mx-electrons:

¥(1, 2,...n) = A(o, M¥.(1, 2,...,n)¥,(1, 2,...,m,)
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where n, and n, are the number of o- and w-electrons respectively.
4(g, =) is an antisymmetrizer, which is an operator which ‘exchanges’
electrons between ¥, and '¥,. It works in the same way as the Slater
determinant did in § 10-2. In fact we could have written

W(1, 2,... n) = A{D,(1)Dy(2) ... D (n)}

in place of eqn (10-2.3). The m-electron approximation is then defined

a8 that approximation in which the electronic wavefunctions for some

set of molecular states are separable with the same ¥, for all of them.
The total Hamiltonian H is then separated into two parts:

H = H2+HI
where " n, N ng
HY = —43VI_3 5 Zfr,+ 3 31r,
a=l g=1 a=1 p=lyv>p
H, = H2+ 2' i llf‘,,,
=1 ym=1
and ng ny N 6, n
HY = — 33 Vie 3 3 Zfryt+ 3 3 lr..
-1 e g p=lvr>g

H, and H refer respectively to ¢ and m-electrons exclusively and the
Hamiltonian H, can also be written as

H =38+ X1, (10-4.1)
pml #=lv>np
where N ng
B = AV 3 Aifrat 3 (10-4.2)
aml wml

These last two equations have the same form as eqns (10-2.1) and
(10-2.2) except that the core Hamiltonian h™ includes an additional

term, 2' 1/r,,, not present in kA, which comes from the interactions
el

between the uth m-electron and the %, s-electrons.

The total electronic energy F is given by the sum of two terms
E —E,+E, )

where

E, = J’ YEHNY, dr,

d
o E, = [¥IHY, dr,. . (10-4.3)

Within the framework of the w-electron approximation £, is assumed
to be simply a constant and the expression for E, is used to find the
optimum =-electron LCAOQ MOs; that is, the Hartree—~Fock—Roothaan

Molecular Orbital Theory 205

equations (eqns (10-3.2) to (10-3.4)) are applied to the =-electrons by
replacing H by H, and ¥ by ¥',, where ¥, is written as

¥, = A{QY(1)DF(2) ... OF (n,)}

h : 3
e i (k) = 3, C.su(k) (10-4.4)
and .
¢,(k) = m-atomic orbital

(or, for symmetry orbitals, ®f (k) = ¥ C_é.(k)).

10-5. Hiickel molecular orbital method

Our approximations so far (the orbital approximation, LCAQ MO
approximation, w-electron approximation) have led us to a s-electronic
wavefunction composed of LCAO MOs which, in turn, are composed of
w-electron atomic orbitals. We still, however, have to solve the Hartree—
Fock-Roothaan equations in order to find the orbital energies and
coefficients in the MOs and this requires the calculation of integrals
like {cf. eqns (10-3.3)):

HE = [ $HDH™(1)gy(1) dr,

Sa = [ $1(V$(1) dry.

In these integrals the additional superscript = indicates that we are
now within the framework of the m-electron approximation and that
cssentially H has been replaced by H, (see eqn (10-4.1)) and conse-
quently H*(u) (see eqn (10-3.4)) by

H " (u) — heoo 4 2 L) —K(p)})-

These integrals are difficult to evaluate exactly and the Hiicke}
molecular orbital method centres on approximations to them.

1t is assumed that each carbon atom contributes one w-electron and
one 2p, atomic orbital to the system, so that

O (k) = g Cublk)

where 7, equals the number of carbon atoms and ¢, is a 2p, orbital
located at the & carbon atom. The theory then makes the following
important approximations:

HMT — o

Hott.r [ﬂ (if r and s signify nearest neighbour carbon atoms)

and

0 {otherwise}
STI = afl
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« and § are called the Coulombic and resonance integrals respectively
and they are strictly empirical quantities which are determined by
comparing the results of the theory with experimental data.

With these approximations the equation which corresponds to eqn

(10-3.5) det(H3™ —8"Sp) = 0

is solved. The roots of this equation correspond to the sr-electron
orbital-energies £ and they will be functions of « and B. Finally, the

equations g (H?:”—E:Sﬁ)on =0 7j=12 ..n,

are solved for the coefficients ;. The total »-electron energy is then
given by n /2 n, /2 n 2 n/2

E = 2.21.3:— 2; ,z‘(2J,,—K,,) =2 _Els:—G. (10-5.1)
Since @ is assumed to be constant for all electronic statea of a given
molecule, the important part of £, is the sum of the »r-electron orbital
energies.

If symmetry orbitals are used in place of atomic orbitals, then
H3F" and S,, will become integrals over these orbitals and they will
have to be broken down to integrals over the atomic orbitals before the
Hiickel approximations are made.

10-8. Hiickel molecular orbital method for benzene

We will consider the application of the Hiickel molecular orbital
method to the benzene molecule and we will first see what happens
when we do not make use of symmetry. The benzene molecule has a
framework of six carbon atoms at the corners of a hexagon and each
carbon atom contributes one w-electron. The m-electron MOs will be
constructed from six 2p, atomic orbitals, each located at one of the
carbon atoms, thus, .

: = uzlc"¢”

¢l = (2pz)s-

If we use the following Hiickel approximations

Heflr — o
e B (r and s nearest neighbours)
” (W {otherwise)

Srl = 61-
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then the equation which determines the m-electron orbital energies
det(HT" —£"S,,) =0 (10-6.1)
becomes eqn (10-6.2). This equation can be simplified by dividing each

a—e" g 0 0 0 B

8 x—e" B 0 0

0 Booame  F 0 16 (10-6.2)
0 L B c—e” B 0

0 0 B a—e" B

B 0 0 0 Jel o —g"|

element by § and letting z = (a—e")/

to give eqn (10-6.3) which can be solved and the six roots z,, «,,..., =,

1 0 0 O 1
1 = 1 0 0 0
01 =1 0 0O
=0 (10-6.3)
0 01 = 1 0
0 0 01 = 1
1 0 0 0 1 =z

(and hence the six 7-electron orbital energies) determined. The solution
of eqn (10-6.3) requires multiplying out the determinant, obtaining a
sixth order polynomial equation in z and then finding the six roots.
This can be quite time consuming.
Now let us see what happens if we apply symmetry rules to the
problem. Essentially what we will do is to write
L]
7 = Z 0;J¢;
=l
where the ¢, (symmetry orbitals) are symmetry-adapted combinations
of 2p, atomic orbitals which generate irreducible representations of the
Ppoint group to which the molecule belongs. This is the same thing as
saying that we will change the basis functions used for ®° from 4, to
¢,- Though benzene belongs to the Dy (— P, ® €,) point group, we
can, in fact, get all the information we require from the simpler point
group 2,, to which benzene also belongs.
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The six 2p, a*omic orbitals (¢,, ¢,,... $,) form a basis for a reducible
representation I'*® of @,, since by applying the usual techniques
(§ 5-7) we find that the transformation operators O, transform ¢,
either into itself or the negative of itself or into one of the other five
atomic orbitals or the negative of one of the others:

Ogd; = ¢
or Ord, = ¢

so that s
on¢i = ’El DIAto(R)¢l'

The diagonal elements of the matrices D*°(R) will only be non-zero if
an orbital is transformed into the positive or negative of itself, hence
we obtain the following characters for I'?

D, IE 2c, 2C, €, 3C, 3C;

*%C) | 6 0 0 0 —2 0

(the C¢-Cy—C; axis is perpendicular to the molecule and through its
centre, the three C; and three C; axes are in the molecular plane with
the C; axes running through opposite carbon atoms and the €y axes
bisecting opposite bonds). Using these characters and the @4 character
table (see Appendix I), the standard reduction formula (eqn (7-4.2))

leads to: A% — rigrbhigregr

and therefore it must be possible to find combinations of ¢y, ¢s,... P
which will serve as bases for the irreducible representations s, I‘B‘,
'™, I'*z of @,. [The same combinations will also necessarily generate
irreducible representations of 2, and since each ¢, changes sign under
O,,, the corresponding irreducible representations from 2, must be
such that y(a,) is negative! From the character table for D, it is clear
that we must have

T40 = MugTPugTEu@T e ]

To find the particular combinations of ¢, which form a basis for
s, I'®s, I®1 and I'®* we make use of the projection operator technique
and define the following operators (see eqn (7-6.6)):

Pt = 3 z(R)*Op
x

P4 = 054+(0¢,+0c, 1) +(0¢,+0c,1)+ O, — 3 Og —3 O,

TSee footnote on page 216.
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(the > indicates, for example, the three operators associated with the
three C) symmetry elements)
PP — O —(0¢,+O0c,-1) +(0¢,+0c; -1} —0g,— 3 O .+ 3 O
PE 205 +(0c,+Oc,-1) — (0, +Oc,1) —20,
PE — 205 —(0c,+0c1) — (0O, +Oc,) +20,.
Since there is only one basis function for the one-dimensional ijr-

reduclble representations I'** and I'®', we need only apply P4 and
P®* 0 one of the starting functions §,:

PA"#x = ‘ﬁ; +(¢l+¢¢) +(¢s +¢s) +¢¢
—(— b1 —Pa—s) —(—ha—fs— )
= 2(p1+ b2+ s+ Pet+Ps+ o)
PP, = 2(p,— —drt+ds— bt ds— )
and these two linear combinations will form a basis for I'** and I'?s,
respectively. For I'** and I'** one must apply PE: and P to at least

two ¢, in order to produce two linearly-independent basis functions
for each of these two-dimensional irreducible representations. Hence

PErg, = 24 +da— s — 24— b5+ s,
Poigy = ¢+ 245+ ds— by —2¢; — g,
d P¥ig, = 241 —Pa—ba+2¢—Fs— s,
a
n PE’¢$ = —¢1+2d;— by — Py + 25— 5.
Since in Hiickel molecular orbital theory it is assumed that

J #29,dr = 3,

the symmetry orbitals are readily normalized. For example, for the
first symmetry orbital the normalization constant N is ngen by the
equation

1= N*2(¢,+¢g+¢,+¢.+¢,+¢.)*N2(¢1+¢,+¢.+¢‘+¢,+¢.) dr
— AN S S [ 414, dr = 4Nt 3 30, = 24

fm=l {1

and therefore N = (24)~% and the normalized symmetry orbital is
(¢1 +¢l +¢' + ¢l + ¢6 +¢l)l‘\/6‘

It is convenient if the symmetry orbitals belonging to a degenerate
irreducible representation are made orthogonal to each other and this is
achieved in the present case by taking combinations which are the sum
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and difference of the original combinations. This works since if ¥ and
@ are two real normalized funections, then

fF+oNF—e) ar =[Fs dr+[GF dr— [F@ dr—[@rdr

=1-1
=0,
The orthonormal symmetry orbitals are therefore:

4’1 = (¢1+¢:+¢:+¢1+¢5+¢0)/‘\/G: (PA')
1 = ($1— s+ b3 — b+ b —da)/1/6, (%)
‘#; == (¢1"¢l—2¢:—¢¢+¢s+2¢c)/2\/3: (I‘E‘)
1 = (1 +da—du—s)/2, (T
Ps = {1+ ds—2hs 1P+ bs—2d,)/24/3, (T'Fa)
P = (d1—Pa+ba—&3)/2. (T¥%y)

These six orthonormal fanctions are an equivalent orthonormal basis
to that of ¢, (they describe the same function space) and if we use
them in place of ¢, by writing

[ ]

D7 = 2 0;1'#;

a=l

then eqn (10-6.1) becomes
det(Hp—e"Sp) = 0

where Hj, and 8), have the same form as H™* and S, except that in

the integrands each ¢, is now replaced by ¢;. Thus:

Hj,=[ $i*H*¢; dr
=} [ (Brt+datdat bt s+ SIHT (B + s+ ba+bo+ s+ dr
=§{a+p+B+B+atp+B+atptpratpf+Btatf+p+p+a)

=a--2
26 Hy =a—28
Hyy = a+p
Hi = atf
Hy = a—p
Heyy = a—8

and, most importantly,
Hy =0 fori #3j

and Sy = 3,y
If we divide each element in the determinant by # and put
z = (a ’—8’)/ 8,
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then we obtain eqn (10-6.4) which is in block form. Any determinant in

2z --2 0 0 0 0 0
o r—2 0 0 0 0
0 0 z+1 0 0 0
0 0 241 o 0 = 0 (10-8.4)
0 0 0 0 z—1 0
0 0 0 0 0 r—1
block form can be factorized, for example if
4; [0] [0]
o] 4y [0} .|
[ [0 4, .|

then [4;] = 0 or |4,] = 0 or |4,] = 0 etc. (see eqn (5-9.8)). So that
from eqn (10-6.4) we obtain:

z+2 =0
or z2—2 =0
or z+1 =0  (bwice)
or .
z—1 =0 (twice).

It is clear that eqn (10-6.4) is much easier to solve than eqn (10-6.3),
though the results, of course, are identical. In general, by using sym-
metry orbitals ¢, which are a basis for one of the irreducible repre-
sentations of the point group, the matrix whose elements are
(Hix—e"83)

will be in block form with each block corresponding to the symmetry
orbitals which belong to a given irreducible representation. This
occurs since the Hamiltonian H*™" commutes with all O, and this
means that it belongs to the totally symmetric representation I (see
Appendix A.10-3). The vanishing integral rule (§ 8-4) then predicts
that [$;*H*™ ¢, dr is zero if ¢; and ¢; belong to different irreducible
representations. Similar arguments also hold for 8;,.

The =-electron orbital energies for benzene are therefore, in order
of increasing energy: «+2f, a+8, a+8, a—p, a—p, and a—28 (g is
negative) and these energy levels are labelled by using the lower case
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notation of the irreducible representations of 2, which are associated
with them:

€

x—28 —_— (beg)
x—f —_— —— (e
x+A ——  —ee—  (e,,)
x+28 —— (ay,)

The crosses indicate that two electrons are fed into the non-degenerate
@,, level (one with spin «, the other with spin ) and that four electrons
are fed into the doubly degenerate ¢,, level; the whole making up the
ground state m-electron configuration (a,,)%(e,,)*

Ignoring @ (see eqn (10-5.1)), the m-electron energy for the ground
state will be 6+ 88 which, when compared with the =-electron energ
of three ethylene molecules (6x-168), shows that the delocalization
energy of benzene is 2.

In this problem we are fortunate that the factorization of the
determinant is complete and as a consequence the n-electron MOs are,
in fact, identical with the symmetry orbitals:

D7 = ¢
ie Cy =8,

10-7. Hiickel molecular orbital method for the trivinylmethyl radical

The trivinylmethyl radical *C{CH=CH,), has seven carbon atoms
and seven r-electrons and belongs to the 2, point group. We will
however use the lower symmetry point group %, to which the molecule
also belongs. The labeling of the carbon atoms is shown in Fig. 10-7.1.
In Table 10-7.1 we show how the seven 2p, atomic orbitals {¢,, ¢g,... ¢4)
transform under the operators O and from these results we obtain the
characters of I'A9; they are given together with the ¥, character table
in Table 10-7.2. It will be noticed that the I'? representation has been

F1a. 10-7.1. The trivinylmethyl radieal.
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TABLE 10-7.1

Transformation of ¢, under O for the trivinylmethyl
radical

split into two one-dimensional representations (I'** and I'!s), where
the characters of one are merely the conjugate complexes of the
characters of the other. Use of the reduction formula (eqn (7-4.2))
leads to I'4® — 3aM“@2l® g2r"

so that the seven atomic orbitals can be combined into seven symmetry
orbitals: three forming a basis for I'Y, two for I'®* and two for I'":.

These symmetry adapted combinations are found by using the
projection operators: P* — % 2“(R)*O,

on the ¢,. The following linearly independent combinations are then

obtained: PA¢1 = ‘ﬁx +da+ ¢,
P“ﬁc = ¢4+¢5+¢v
P4¢1 = ¢7+9‘1+¢1’
PEr\, = ¢+ s*dp+eddg,
PE‘¢L = b+ &5+ £cdg,
Pirg, = ditedyt ey,
PE’¢A = g+ E£P5+ c* g,

TABLE 10-7.2
Character table €5 and ¥3° for the trivinylmethyl

radicalt
€ E <, C:
A 1 1 1
sm 1 . 7
97°c) 7 1 1
t & = exp(2mif3) = §(v/3i—1)

£* = exp{—2mi/3) = — {1+ v/3i)
ete® = —~1
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where ¢ = exp(2#if3) and all other combinations, e.g. P*$,, will either
be one of these combinations or some combination of these combina-
tions. When normalized, the symmetry orbitals are:

$1 = (1 +ds+8,)/v/3, (T4
; = (¢4+¢s +¢¢)/\/3: (FA)
# = ¢‘h (PA)

$i = (hitebated)/vs, (D5

¢; = (¢l+3.¢6+5¢|)/\/3! (FE‘)

$o = (Brtedate'dy)/v/3,  (IF)

¢ = (dutedste¥da)/v3.  (IFy
Since f¢;¢$, dr = 8, (Hiickel approximation), it is easily confirmed
that these ¢, satisfy [¢;*4; dr = 1. Because the symmetry orbitals
belong to the irreducible representations of €,, the det(H,, —&*8,,) will
be in the following block form:

+ + 4+
+ + +
+ 4+ o+

+ +

+ o+

where the firat block corresponds to the three symmetry orbitals of '
type, the second block to the two symmetry orbitals of I'F: type and
the third block to the two symmetry orbitals of I'** type.

If we evaluate the elements of this determinant in accord with the
Hiickel approximations, divide each element by B, replace (a—&")/8 by
x and factorize the determinant into its three parts, we obtaint eqn

t Care has to be taken with the conjugate complexes in the T'#1 and T'"s type sym-
metry orbitals, e.g.

H,, = [§img ar
= f (b1 +eds+e*$)H" -7 (4, + 2% Py +ed,) dr

and,

=g
H = [$megiar

= & [rteate g HMI (G b, +eg,) ar
-5
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(10-7.1) for the I'* symmetry orbitals, eqn (10-7.2) for the I’** gym-
metry orbitals, and eqn (10-7.3) for the ['®* gymmetry orbitals.
x 1 0
1 =z +/3|=0 (10-7.1)
0 43 =

z 1
=0 (10-7.2)

1 =

z 1
=0 (10-7.3)

1 =z

Clearly it ia much easier to solve one 3 x 3 and two 2 x 2 determinantal
equations than the 7 x7 determinantal equation which occurs when
no use is made of symmetry.

Multiplying out eqn (10-7.1), we get z*—4x =— 0 and the roots of
this equation are 2, = 0,2, = 2, and z, = —20re] = a, g = a—2§,
and £f = a+428. Substituting these roots, in turn, into

; (Hjp—e185)Cr = 0
and using the normalization equation
2Cu=1,
we obtain for & = a, *
Cn = —+/3/2, Cyn =0, Cin =142
or Of = —(v/3/2)$1+0 X $at+ids = ($1+¢s+ds—1)/2
for &7 = a—28,

Cia = v2/4,  Ci=—1v2, Ci= /64
and D = (¢1+¢=+¢s—2¢4—2¢5—2¢s+3¢1)/2‘\/3-
for g5 = a+428

C1s = /2[4, Can = 1/4/2, Cas = 1/6/4,

and OF = (i + o+ Fa 280+ 25+ 2e +36,)/2+/6.
Multiplying out eqn (10-7.2), we get z2—1 =0 or z, =1 and
2z = —loreg =a—fand gf = 2+, thus
o = (¢1+3*¢a+5¢a_¢4—3"'¢5—3¢n)/‘\/6
and D = ($:+e"Patedat Pyt e*ds+ed,)/+/6.

From eqn (10-7.3) we got ¢ = a—f and £; = x+§, and
DF = ($rt2ds+e*bs—da—ed,—e*Pe)/1/6
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and BF = (¢: +edate%by+ Pyt eds+e%P,) /8.

The m-electron MOs ®; and @; are degenerate, in that they corre-
spond to the same n-electron orbital energy (a—f). As is the case with
any degenerate wavefunctions, any combination of ®; and @ will be
equally valid. It is convenient to combine ®; and @ in such a way
as to obtain real MOs, this can be done by:

Oi(real) = (PI+Di)/V2 = (2¢: — s — s — 2+ $s + $e)/v/12
Pi(real) = (O{—B5)/v/2i = (ds—ds—Ps+P4)/2
(note that ¢+ +* = —1). Similarly for ®; and ®; (both corresponding
to an orbital energy of x4 f8), we can find the following two real MOs:
Di(real) = (¥ +¢’;)/‘\/2 = (2¢1 —Ps—ds+2h—bs—Pe) V12
Oi(real) = (PE—DI)/v/21 = (ds—ds+bs—bd)/2-
The m-electron orbital energy level diagram will be:

€

a—28 _ (a)
a-B le)
a ———— (a)
a4+ 8 {¢)
x+ 28 —— {a)

and if we distinguish the MOs of the same symmetry by preceding the
irreducible representation notation by a number which ascends with
increasing orbital energy, the n-electron configuration in the ground
state will be (la)*(le)4(2a)! and the total w-electronic energy will be
E, = T0+488—G.

If we consider the 2,, point group, we find that under the transfor-
mation operator G, all the molecular orbitals change sign:t

0,0 = -0 i=1,2..7
and that under O, ®;, ¥;, and ®; change sign:
0,07 = —0f $=12,3
and that under O, , ®{, ¥7, and ®; are unchanged:
0, o7 = 0F =123

This information is sufficient to classify the MOs with respect to the

irreducible representations of 2, and using the character table, we

see that @], @], and @] belong to I'*s” and @], ®;, ®;, and & belong to
t The 2p, orbitals are perpendicular to the molecular plane o and Ogd; = —¢,.
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I'®". The electronic configuration of the ground state will therefore be
(1a3)*(1e”)*(2az)".
Appendices
A.10-1. Atomic units

The atomic unit of length is the radius of the first Bohr orbit in the
hydrogen atom when the reduced mass of the electron is replaced by the
rest mass m_. Thus the atomic unit of length is

:
Gy = ——— _ 0052918 nm,
4 m,e

The atomic unit of energy is
eYa, = 27-210 6Vt = 1 a.u. {of energy).

This is just twice the ionization potential of the hydrogen atom if the re-
duced mass of the electron is replaced by the rest mass. One atomic unit of
energy is equivalent to twice the Rydberg constant for infinite mass.

When atomic units are used, one sets e = k{27 = m, =1 in quantum
mechanical equations. For example —AiV2/87%m, becomes —1 V3.

The advantage of atomic units is that if all the calculations are directly
expressed in such units, the results do not vary with the subsequent revision
of the numerical values of the fundamental constants.

A.10-2. An aiternative notation for the LCAD MO method
Define the MOs by "
d)i = § Cﬂi¢p
where ¢, are atomic orbitals, then the coefficients C,,, are determined by

- » = 1, 2,-.., m
; (F“'_..s‘S‘”)C‘,‘ =0 s=1,2..m

where

Py = Byt 3 3 Pilipr | i0)—(uo | 1)
H,, = [ 42D, 1) dr,
y = 493 3 Zlree
P,= 2§:Ic;cu {n = number of electrons)
(ur | 40) = [ [$2(1)$,(105 3(2),(2) dr, drs
8, = [ $201)$,(1) dry.

t1eV = 1-60210 x 10-3* J.
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The total electronio energy is given by:
E=33 P+t giéfg:&,zn,{w | 40) — o | %)}
=23e— 13353 PopL v | do)—ttuo | in).

=1
The reader may confirm that the content of these equations is the same
as that of eqns (10-3.1) to (10-3.6).

A.10-3. Proof that the mattix_alamanls of an oparator #/ which commutes with
all Oz of a group vanish between functions belonging to ditferent
irreducible representations

Let y§ be a set of funotions belonging to the irreducible representation I'*
:gld P; an operator which commutes with all the transformation operators
=, then

Ol!"f = ’E D‘f‘i(R)'P’f‘
Ox(Hy) = HO

~ (3 Dryy)

]
= 2}: Di{R)(Hyf).

Qonseguently, the functions Hy? also form a basis for I'* and hence by
invoking the vanishing integral rule, the integral

and

f Vit Hyl dr = f V() dr
vanishes unless I'Y = I'»,

If we consider Hy} in the direct product representation T#*@I* then
since Hyj belong to I'!, ’¥@I™ = I'* and therefore I'¥ — I". Hence, any
operator which commutes with all Oy of a point group can be said to
belong to the totally symmetric irreducible representation I'.

PROBLEM

10.1. For the following molecules, determine the point group and the symmetry
of the MOs for the n-electrons, and, using Hiickel theory, obtain the MOs
and orbital energies:

(@) trans-1,3-butadiene,

() ethylene,

(¢) cyclobutadiene,

(d) cyclopentadienyl radical C;H,,
{¢) naphthalene,

(f) phenanthrene.

11. Hybrid orbitals

11-1. Introduction

In this chapter we explore how symmetry considerations can be
applied to one of the most pervasive concepts in all of chemistry:
bonding between atoms by the sharing of pairs of electrons. Though
the idea of an electron-pair bond was first introduced in 1916 by G. N.
Lewis, it was only after the advent of quantum mechanies that it
could be given a proper theoretical basis. This came about through the
development of two theories: valence bond (VB) theory and localized
MO theory; both of which describe the electron pair in terms of orbitals
of the component atoms of the bond.

In VB theory the pair of bonding electrons in the bond A—B of
some polyatomic molecule is described by the wavefunction

pa(1ye(2)+ya(1)pa(2)

where y, is an orbital centred on nucleus A and yg is an orbital centred
on nucleus B and the 1 and 2 indicate the two electrons (we ignore
electron-gpin considerations). In localized MO theory the electron pair
is deseribed by the wavefunction

W(1)¥(2)

where ¥ is a localized MO extending over both nucleus A and nucleus
B and which can be synthesized from an orbital centred on A(y,)
and an orbital centred on B (yy), i.e.

¥(1) = c,pa(l) +capn(l), (11-1.1)

where ¢, and ¢, are numerical coefficients. Both of these bond descrip-
tions are approximations and at first sight appear to be quite different,
but, if we carry the approximations a stage further, the methods
converge and become completely equivalent. For this reason we will
only consider one of them and choose for our purposes the localized
MO method.

When considering a polyatomie molecule, the general MO method
(see Chapter 10) would describe the n electrons of the molecule by the
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wavefunction (see eqn (10-2.3))

Di(1) Dy(1) ... @, (1)

D,1(2) Dy(2) ... @, (2)
¥(1,2,..n) = 1/4/n! .

Dy(n) Dyn) ... d’u-(”)

where the @, are MOs which extend over the entire molecule, not just a
single bond as in localized MO theory, and can be approximated by
linear combinations of atomic orbitals centred on elf the nuclei. Indeed,
most quantum mechanical calculations done to-day use such wave-
functions. Clearly, the localized MO method, where the electrons in a
polyatomic molecule are divided up into bond pairs, each described by
MOs of the form of eqn (11-1.1), is an approximation to this more
general treatment. The question arises therefore: why do we bother
with it? The answer is two-fold. In the first place, chemical intuition
and experience tells us that many properties of molecules are properties
of the bonds and that these properties are often constant from one
molecule to another, e.g. the existence of a characteristic infra-red
absorption band near 3 ym due to a C—H valence stretching mode is
used to detect the presence of C—H bonds in an unknown molecule.
Such constancy would seem to imply localized distributions of charge
which are transferable and which could be adequately described by
localized MOs. In the second place, localized MOs are easier to imagine
and handle and they preserve the conventional idea of a bond which is
typified by the symbol A—B.

Symmetry plays an important role in localized MO theory since
the orbitals used in the construction of the MOs wa and yy of eqn
(11-1.1), must be symmetric about the bond axis (for the present we will
limit our discussion to o-bonding). The most natural, though not
mandatory, building blocks to use for w, and y, are the atomic
orbitals {AOs) of the component atoms (A and B). In some cases there
is available a single AQ on A and a single AO on B, both of which are
symmetric about the bond axis and therefore meet our requirements,
But more often, and particularly when A has to form several bonds,
there are not the required number of atomic orbitals with the ap-
propriate symmetry and it is necessary to synthesize v, (or yg) from
several AOs of A {(or B). For example methane CH, is a tetrahedral
molecule with four equivalent C—H bonds pointing to the corners of a
tetrahedron and each localized MO is made up of an orbital from the
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carbon atom and an orbital from the appropriate hydrogen atom., The
contribution from each hydrogen atom can be taken as a 1s hydrogen
AO and these will be symmetric about the appropriate bond axis;
however, amongst the AOs of the carbon atom 1s, 2s, 2p,, 2p,, and 2p,
there are not four which are equivalent and symmetric about the four
bond axes. We are therefore forced into taking combinations of these
primitive orbitals if we wish to have four equivalent and symmetric
orbitals; this procedure is called hybridization and the combinations
are called hybrid orbitals. If we restrict ourselves to the broad class of
molecules which have a unique central atom A surrounded by a set of
other atoms which are bonded to A but not to each other (e.g. mono-
nuclear co-ordination complexes, NO;, SO;~, BF,, PF;, CH,, CHCl,,
ete.), then the symmetry of the molecule will determine which AOs
on atom A should be combined (§11-3) and in what proportions
{§ 11-5). If there is more than one combination of AOs on atom A having
the correct symmetry, and this will usually be the case, then arguments
of a more chemical nature will have to be invoked in order to decide
which is the most appropriate combination.

A necessary prelude to determining the combinations of AOs which
give a hybrid orbital of correet symmetry is the classification of the
AOs of the central atom A in terms of the irreducible representations
of the point group to which the molecule belongs. This is discussed in
§11-2. In §11-4 we consider =-bonding systems and in the final
section we discuss the relationship between localized and non-localized
MO theory.

The reader who is not familiar with the background of this chapter,
and it has only been summarized in the preceding paragraphs, is
recommended to read C. A. Coulson’s excellent book: Valence.

11-2. Transformation properties of atomic orbitals

In constructing a localized MO for the bond A—B it is necessary to
specify an orbital centred on A (y,) and an orbital centred on B ().
In principle, provided symmetry about the bond axis is preserved (we
are still considering only o-bonded systems), our choice of y, and yp
is not restricted and we could use any well-defined mathematical
function or combination of functions. Common sense, however, dictates
that the most sensible functions to use for this purpose are the AOs
of the free atome A and B. There are three reasons why this is a sensible
choice: one mathematical, one chemical, and one practical.

The mathematical reason is that the AOs of a given free atom form
what is known as a complete set, that is any function can be produced
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by taking a combination of them ; so we know that it is mathematically
possible to replace y,, whatever its form, by a combination of A’s AOs.
The chemical reason is that the bond A—B is chemically formed by
combining atom A with atom B and we expect the electronic distri-
bution, at least close to the nuclei, to be similar in the bond to what it
is in the free atoms. The third reason is that we know from atomic
calculations the energy order of the AOs and we expect that the lowest
energy MOs will be those formed from the lowest energy AOs. This
fact can often help us decide which AOs to choose for the construction
of an MO when symmetry arguments leave the matter ambiguous.

Having decided to use AOs (or combinations of them) for v, and
¥5: we will now look at the form these take. They are approximate
solutions to the Schridinger equation for the atom in question. The
Schridinger equation for many-electron atoms is usunally solved
approximately by writing the total electronic wavefunction as the
product of one-electron functions ¢, (these are the AQOs). Each AO
¢. is a function of the polar coordinates r, 8, and ¢ (see Fig. 11-2.1) of
a single electron and can be written as

$: = B(r)Y (6, #).

The radial functions R,(r) will be different for different atoms. Only
for the hydrogen atom is the exact analytical form of the R (r)s
known. For other atoms the R,(r)’s will be approximate and their form
will depend on the method used to find them. They might be analytical
functions (e.g. Slater orbitals) or tabulated sets of numbers (e.g.
numerical Hartree-Fock orbitals).

= Y

/7

F10. 11-2,1. The coordinate system for atomic orbitals,
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TasrLe 11-2.1
Angular functions (un-normalized) for s, p, d, and £

orbitals
Symbol Angular function
] no angular dependence
Pe min & cos ¢
Py ain § sin ¢
Ps cos &
dy,a_,t or d,e 3 cost9—1
sin*0 oos 2¢
sin®f sin 24
d., ain § cos 6 cos ¢
" ain § cos & sin ¢
faisa®—ar?) OF F,3 sin & eoa ¢ (5 ain*6 cos*¢—3)
£ i5at-asd) OF £ 2 sin 6 gin ¢{5 sin?0 sin®$ —3)
foinst_asty OF f,2 5 cos?G—3 cos 8
A TN sin B 008 ¢ (00s*d —sin*@ sin'e)
£t sin § sin ¢ (costd —sintd cosl¢)
Fotad s 8in30 coa @ coa 24

s 8in%*8 cos A gin 2¢

The angular functions Y {0, ¢), called spherical harmonics, are
common to all atoms. They are listed in Table 11-2.1 (in this table the
normalizing constants have been omitted) together with the well-known
symbols for the orbitals to which they correspond, i.e. s, p,.. p,, p,. ete.
The gubacripts in these symbols are directly related to the angular
functions; if, for example, the angular function is sind sin 24, then
changing to the Cartesian coordinates z, ¥, and z where: @ = r sin 0 cos ¢,
y = rsin 08in ¢ and z = r cos O gives us:

8in3f sin 2¢ = 2 gin?d sin ¢ cos ¢
= 2(sin @ cos ¢)}(sin 0 sin ¢)
= 2(z/r)(y/r)
= (2/r*)xy
= f(r)xy
and any orbital with this angular dependence is given the subscript xy.

If we restrict ourselves as before to those molecules which have a
unique central atom A surrounded by a set of other atoms which are
bonded to A, then in order to aseertain which AOs of A can be used
to produece a y, which is symmetric about a particular bond axis, it is
necessary to know to which irreducible representations of the molecule’s
point group the AOs of A belong, i.e. for which irreducible repre-
sentations they form a basis. That they must form the basis of some

repregentation of the molecular point group follows from the fact that
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TaBLE
The symmetry species of the 8, p, and d

P,

P
d

cl,g_,l

d

@ € @ € € € 9, 9 B, B, D €x Cw Cuw € €ov €
4, 4 4 A4 A 4 A A A, A A, A, A, A, A, A4, a4,
4, B B, B, B,
B B E K E E E R, E E &, K
4, B B, B, B,
4, A A A A A4 B, A, A, A, A, A, A, A, A, A, 4,
4, 4 A A 4 A A A, A, A, A, A A4, A, A, 4, a,
4, 4 B A B, A B A
® E, E, E 5, B ' 8 ' & 8 °
A, 4 B B, B, Yo, B, 1" 4,
A, B B, B, B
E E E, E, E E E, R, B B B E '
A, B B, B, B,

gince atom A is unique, it must lie on all the planes and axes of sym-
metry which the molecule possesses. We have considered this question
for p- and d-orbitals using the 2,, point group in § 7-9 (see also § 5-9)
and the technique used there can be applied to all orbitals and all
point groups. The results are given in Table 11-2.2; they are also
incorporated in the character tables in Appendix I at the end of the
book. As an example of nsing Table 11-2.2, consider the phosphorus
atom in PF;. This molecule belongs to the 2,, point group and we
immediately see that the phosphorus atomic orbitals belong to the
following irreducible representations:

r"l': 8, d.‘:
| i (Pe Pv)’ (dz'—v" dﬂ)
r4. p,

r E": (dat’ dv:)
where the parentheses indicate that the two orbitals inside them
together form a basis for the given two-dimensional-irreducible repre-
sentation.

The reader should note that no transformation operator O can
alter the radial function R,(r) of an orbitalf and consequently the
symmetry properties of the AOs are completely defined by the angular
functions, Y (9, ¢). Since these angular functions are the same in all
‘one-electron product function’ approximations, the orbitals in all
these approximations (Slater orbitals, numerical Hartree-Fock orbitals,

1 The only exception to this rule is the hydrogen atom, see the footnoto on page 1565,

11
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-2.2

orbitals for different poini groups

€n

€ Cin € P Pan Din Pen Pan Pya Pya Pea Poa Pya Ly S

e

E

e
A’

E

A' A’ “'a ‘4' A; All A; Al: Al 'Au Al Al' Al 4 A-‘ Al All

kE, E, £, E B, E E, E B, B, B, & ¥ K,
Bll! Tl Tll
A, 4 A, B, Ay A, Ay A4,, By, A, B, A, B, B A,
Al A A' AD ‘4;. Au A; Alr Al A“ Al Al- Al 4 Al'
x z,
Bl ’ Al " Bl' ’ Bl B
E: E" £ El EI' El‘ Ei En E: El
B, B,, By, B, B
B.i Tl TIJ
E, E £, E* B, E E, E K, E, E, E; E E,
B,

ete.) will belong to the symmetry species designated in Table 11-2.2.
Similarly the symmetry species of an orbital will be independent of the
atom involved and of the principle quantum number of the shell to

which it belongs.

11-3. Hybrid orbitals for c-bonding systems

A nodal plane or surface is the locus of all points at which a wave-
function has zero amplitude as a result of its changing sign on passing
from one side of the surface to the other; the probability of finding
an electron on such a surface is zero. o0-Bonds and o-orbitals are
defined as those having no nodal surface which contains the bond axis;
such bonds and orbitals will be symmetric about the bond axis. In
this section we consider which AOs of a central atom A (which is
bonded to a set of other atoms) can be combined to form a hybrid
orbital which is symmetric about the bond axis and therefore capable
of o-bonding.

We will explain how to do this by taking the specifio example of
methane. Methane has a central carbon atom which is ¢-bonded to
four hydrogen atoms with each o-bond pointing to one of the corners
of a tetrahedron. We therefore require four hybrid orbitals on the
carbon atom which similarly point to the corners of a tetrahedron.
Since the four bonds are indistinguishable, the four hybrids must be
equivalent, that is to say they must be identical in all respects except
for their orientation. For the reasons given in § 11-2, they will be taken
to be linear combinations of the atomic orbitals of carbon, which are
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themselves bases for certain irreducible representations of the point
group of the molecule ;. The hybrid orbitals, as we will see in a
moment, form the basis for a reducible representation of the 9, point
group and we will give this representation the symbol I'V®, Using the
equations in § 7-4 we can reduce I™® and find the irreducible repre-
sentations which it contains. Let us suppose we find

2" =T g Ie

where I't and I'? are two irreducible representations of 7,. Thisimplies
(see Chapter 6) that there are combinations of hybrid orbitals which

e

AR

H

F10. 11-3.1. A set of vectors v,, ¥,, ¥,, and v, representing the four a-hybrid orbitals
used by carbon to bond the four hydrogens in methane.

will serve as a bagis for the I and I'? irreducible representations of
F4- Now we can reverse the argument and say that there are combi-
nations of those functions which belong to I'" and I'* which will serve
as a basis for ™" and which can be taken as the hybrid functions
with the symmetry properties which we degire. We conclude, therefore,
that we should take linear combinations of those atomic orbitals which
belong to I't and Iz,

First then, for methane, we must obtain I'™?, To do this let us
associate with each carbon hybrid orbital a vector pointing in the
appropriate direction and let us label these vectors v;, v;, v,, v, (see
Fig. 11-3.1). All of the symmetry properties of the four hybrid orbitals
will be identical to those of the four vectors. The reducible repre-
gentation ™" using these vectors (or hybrids) as a basis can be ob-
tained from

.
Rv, =3 Di7"(Ryv, i=1,2,..4
=1

(compare with eqn (9-4.2)), but since we only wish to carry out the
reduction of I'™®, we only need the character of I'™'®, which is given by

PR) = 3 DR,
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It is clear that only if v, is unshifted by R will D¥¥’(R) be non-zero
and then it will be unity. Consequently x*®(R) is equal to the number
of vectors which are unshifted by R (this line of argument is analogous
to that used in considering the representation ' in § 9-6). Proceeding
in this way, we find the character below for I'™" for the %, point

Fa | E 8C, 3C, 65, 6a

e | 4 1 0 0 2

group. Using this information together with the character table for
7, and eqn (7-4.2), we find

" = M4 @ I'",

Recalling our earlier discussion, this equation means that the four AQs
which are combined to make the set of four hybrid orbitals must be
chosen so as to include one orbital which belongs to the I'! repre-
sentation and a set of three orbitals which belong to the I'’* repre-
sentation. Reference to Table 11-2.2 shows that the AQCs fall into the
categories below for the F, point group. So we can combine an s-orbital

r4 I'Ts e
8 (Pas Py P,) (d,s, dea_,s)
(dtw’ dﬂl’ dVl)

with the three p-orbitals in four different ways to produce four equiva-
lent hybrids, called sp® hybrids, or we can combine an s-orbital with
the three d-orbitals (d,,, d,,, d,,) in four different ways to form four
equivalent sd® hybrids. Both sets of hybrids will have the correct
symmetry properties and will point in tetrahedral directions.

This is as far as symmetry arguments alone will take us and we can
only conclude that the most general solution to the problem would be
a set of hybrid orbitals which are linear combinations of both pos-

sibilities, namely wo = a(sp®) +b(sd?)

(plus additional terms if f, g,... orbitals are taken into account). The
numerical coefficients ¢ and b might be determined by some quantum
mechanical technique. However, it is at this stage that our chemical
intuition can be used, or rather our knowledge concerning the relative
energies of the AOs in a free carbon atom, and we can predict that b
is quite small compared with a.

If we assume that the 1s orbital cannot be used on the grounds that
it is already occupied by two core (or non-bonding} electrons then the
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s8p?® hybrids can be constructed from the 2s- and 2p-orbitals of carbon.
The lowest energy, and therefore most stable, d-orbitals available to
carbon are the 3d-orbitals, so that the most stable sd* hybrids would
be constructed from the 2s, 3d,,, 3d.,, and 3d,, orbitals. However, in
the carbon atom the 3d orbitals lie about 230 keal/mole higher than
the 2p-orbitals. Therefore, in order for the bonds formed by using sd?
hybrids to be more stable than a set using sp? hybrids, each sd® bond
would have to be about 3 230/4 ~ 170 keal/mole stronger than each sp?
bond. This is highly unlikely and even a limited usage of sd* hybrids will

B

Fia. 11-3.2. A set of veetors v,, V,,-.., and v; representing the five g-hybrid orbitals
used by A to bond the five B atoms which surround 4 in a trigonal bipyramid structure.

be of very minor importance. We conclude that for CH, the hybrids
are of sp® character. However, for a species like MnOy the sd? hybrids
will predominate because in this case the lowest available d-orbitals
are 3d and the lowest available p-orbitals are 4p and the 3d-orbitals
are of lower energy than the 4p-orbitals.

As a second example, let us consider a molecule with the formula
AB; having the symmetry of a trigonal bipyramid 2,,. The vector
system is shown in Fig. 11-3.2. The set of five hybrid orbitals (or
vectors) on A form a bagis for a reducible representation of the 2.,
point group, with the following character: ’

glh ‘ E 2Ca 362 LY 2S3 30‘.
MC) | b 2 1 3 0 3

From this we deduce that:
Phyh —_ 21'1A,_' @ PA,' @ PE‘

and that the set of five atomic orbitals on A which are combined to
produce the set of five hybrid orbitals must be chosen go as to include
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two orbitals which belong to I'“*, one orbital which belongs to "
and a set of two orbitals which together belong to I'*. The atomio
orbitals of A fall into the following categories for the &, point group
(see Table 11-2.2):

4 r= oy =
8 (Pﬂ’ P’) pl (d.-’ d'.)
d, (dys_ys, doy)

Therefore, any of the following combinations of AOs will produce
appropriate (from a symmetry point of view) hybrid orbitals:

(1) na, (ﬂ+1)5, p-’ pw’ and Pv’

(2) mns, (n+1)s, p,, d,,, and d,s_,,

(3) ndp, (n+1)d,s, p,, P, and p,,

(4) nds (n+1)d,s, p,, d,,, and d,s_s,

{5) s, d,s, P,, P,, and p,,

(6) 8, dl.’ Ps: du’ and d-'—g"

In molecules which are known to have a trigonal bipyramid struc-
ture, energy criteria make it unlikely that the first four combinations
are important. In PF, combination (5) is the most probable and the
hybrids are labelled dsp®. In gaseous MoCl, it is likely that a combina-
tion of (8) and (6) are used, since the 4d and 5p AOs of Mo are close
in energy. The hybrid formed from the orbitals in (6) is labelled d*sp
and the most general form for y, in MoCl; is

Puo = a{dsp?)+b(d*sp)
with @ ~ b.
In Table 11-3.1 hybrid orbitals for a selection of geometries are
tabulated.

11-4. Hybrid orbitals for ~-bonding systems

In contrast to o-orbitals and o-bonds, a w-orbital or #bond is
defined as one which has one nodal surface or plane containing the
bond axis. (The reader might note that, though we will not deal with
them, 3-orbitals and 3-bonds have fwo nodal surfaces which intersect
on the bond axis.) If & w-bond is to be formed in MO fashion by com-
bining two orbitals, one on each of the two bonded atoms, it is obvicusly
necesgary that each orbital have n-character with respect to the bond
axis and that their two nodal planes coincide. The formation of &
m-type bonding MO from two »-type AOs is shown in Fig. 11-4.1,
where the plus and minus signs refer to the sign of the wavefunction.
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TasLeE 11-3.1
Different hybrid orbitals

Number of
equtvalent
orbitals Destgnation Geometry

2 sp linear
dp linear

3 sp* trigonal plane
dp* trigonal plane
dst trigonal plane
ds trigonal plane
p® trigonal pyramid
d*p trigonal pyramid

4 ap? tetrahedral
sd? tetrahedral
dsp® tetragonal plane
d3p® tetragonal plane
d* tetragonal pyramid

5 dap? trigonal bipyramid
d¥sp trigonal bipyramid
disp? tetragonal pyramid
ds tetragonal pyramid
dip® tetragonal pyramid
dép tetragonal pyramid
d3p* pentagonal plane
ds pentagonal pyramid

] d?sp* cetahedron
disp trigonal prisin
d*p trigonal prism
d?*p*® trigonal antiprism

Let us consider a molecule AB, in which each atom B is bonded
to atom A. We will assume that each atom B has available two #-AQs
which are orthogonal to each other, i.e. their nodal planes are mutually
perpendicular (they might, for example, be a 2p, and a 2p, AQ). If
we wish to form 2» =-bonds, requiring 2n 7-MOs, then we muat furnish
2n 7-AOs or hybrids on A which match up with respect to their nodal

atomic orbitals molecular orbital

Fro. 11-4.1. The formation of & =-type bonding molecular orbital.
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planes with the 2n 7-AOs of the B’s. Each bond will then consist of
two shared pairs of electrons (a double bond). In this section we are
concerned with the choice of the AOs of A which, when formed into
linear combinations, provide the 2n hybrid orbitals of the appropriate
symmetry.

As an example of an AB, molecule, we will discuss the planar
symmetrical molecule BCl, which belongs to the 2, point group. First
we assign to each chlorine atom a pair of mutually perpendicular

]

Fia. 11-4.2. Vectors repregenting x-orbitals on the Cl atoms in BCI,.

vectors to represent the w-AOs of the chlorine atoms. Each vector
points towards the positive lobe of the orbital and, in a pair, one vector
is perpendicular to the molecular plane and the other is in the molecular
plane and perpendicular to the relevant bond axis (see Fig. 11-4.2).
This particular arrangement is chosen simply for convenience and
other arrangements are equally valid provided that the two vectors on a
given chlorine atom are mutually perpendicular and in a plane perpen-
dicular to the B—Cl axis.

The six necessary hybrid orbitals on the boron atom can also be
assigned vectors. If 7-bonds are to be formed, these vectors must have
the same orientation as the six vectors on the chlorine atoms. If we
followed in the footsteps of § 11-3, we would now conmstruct the re-
ducible representation I™”® from a consideration of how the six vectors
on the boron atom change under the symmetry operations of the 2,
point group. However, it is clear that since the six vectors on the
chlorine atoms match the six on the boron atom, exactly the same
representation I'™® can be found by using these vectors instead. Since
it is less confusing to have three pairs of vectors separated in space
than six originating from one point, we will take this latter approach.
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(We could have done exactly the same thing for methane in § 11-3, it
would simply have meant reversing the vectors in Fig. 11-3.1.)

Except for this change, we find y*®(R) in the same way as before.
We note, however, that this time the direction of a vector may be
reversed as the result of & symmetry operation and in such a case there
will be a contribution of —1 to the character of that operation. Further-
more, we immediately see that in carrying out the different symmetry
operations, no vector perpendicular to the molecular plane is ever
interchanged with one in the molecular plane and vice versa. This
implies two things: the representation I'™"® is at once in a partially
reduced form (the matrices are already in block form, each consisting
of two blocks); and the vectors perpendicular to the molecular plane
on their own form a basis for a reducible representation of £,, (which
we will call I‘;Zrbp) and the vectors in the molecular plane on their own
also form a basia for a reducible representation of Z;, (which we will
call I'"™® 3}: necessarily

plane
M = e,
The following results are obtained for BCl,:
Do | E 2C, 3c, oy 28, 3o,
7™C) 8 0 —2 0 0 0
120G 3 ] —1 -3 0 1
2o (C)) 3 0 —1 3 0 -1

These characters, using the standard decomposition formula, lead to
a Iz, = T4 oI
. I
Therefore, in order for boron to form a w-bond perpendicular to
the molecular plane to each of the chlorine atoms, it must use three
hybrid orbitals constructed from one AO which belongs to I''* and a
pair of AOs which belong to I'*". Table 11-2.2 shows that only the
following orbitals meet these requirements:

4y |

P« (dwn’ dn)

and a set of three equivalent hybrids (pd? type) using these orbitals is
the only one possible for the ‘perpendicular’ w-bonds. For the hybrids
which are in the molecular plane, we require an atomic orbital which
belongs to 'Y and inspection of Table 11-2.2 shows that no s-, p-, or
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d-orbital fulfills this requirement, though there are two pairs of atomic
orbitals, (p,, p,) and (d,s_,s d,,), which belong to I'®’, the other
necessary component. Therefore we cannot form a set of three equiva-
lent n-bonds in the molecular plane. However, this does not mean no
w«-bonds in the plane can be formed or that only two of the chlorine
atoms can be w-bonded in the plane. It simply means that there can
only be two n-bonds in the plane shared egually amongst the three

el

B

m—

/ _—

B et

/

) S

F1a. 11-4.3. Vectors representing w-orbitals on the B atomsa in an octahedral AR,
molecule.

chlorine atoms; these two w-bonds using the I'’* orbitals. This type of
situation arises quite often.

Now let us consider the important case of an octahedral AB, mole-
cule. If we associate two mutually perpendicular vectors with each
atom B ag in Fig. 11-4.3, we obtain the following character for I'™":

a, |E 8C, 3C, 6C, 6C; i 8BS, 3a, 65, 6a,

£BTH(C)) 0 -4 0 0 0 0 O 0 0

For this class of molecule the vectors do not fall into two categorieas
and we obtain a single reducible representation:

e = Il TugTing DTy,
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For the irreducible representations in this symbolic equation, inspection
of Table 11-2.2 shows that we have the following s-, p-, and d-orbitals:

it % | ™ T

none (dﬂv' dEj’ dvl) (PE’ P" pl) none

Since the p-orbitals on A have moat likely been used up in o-bonding,
we have only the three T',, d-orbitals for =-bonding. We therefore
conclude that there can be three w-bonds shared equally amongst the
six A—B pairs.

11-5. The mathematical form of hybrid orbitals

So far we have only considered whick AOs are required for the
construction of hybrid orbitals of the appropriate symmetry. We now
will show how we can obtain explicit mathematical expressions for the
hybrid orbitals which will allow us to see exactly Aow muck each AO
contributes. Though hybrid orbitals are most frequently used in
qualitative discussions of bonding, they do have their quantitative use
when one carries out an exact MO calculation and when one deals with
coordination compounds, where it is often necessary to use hybrid
orbitals for evaluating overlap integrals which are often related to
bond strengths; in these situations the explicit expressions are required.

As an example, let us consider a symmetric planar AB, molecule
belonging to the @, point group. Using the technigues of § 11-3, we
find that the three hybrid orbitals of A y,, w,, and y; which form
o-bonds with the three B atoms, are composed of one AO which belongs
to I'*1" and & pair which belong to 'Y, By use of the projection operator
technique (see § 7-6) we can project out of vy, y,, and ¥, functions
which belong to the irreducible representations I'* and I'* and, by
equating these functions with the AOs which are being used, we can
obtain equations mathematically linking the hybrids with the AOs.

The projection operator corresponding to the uth irreducible repre-

sentation is: P =3 x"(R)*O,
3

(see eqn (7-6.6)) and in Table 11-5.1 the results of applying O, to the
three hybrid orbitals are given (the directions of the hybrids are shown
in Fig. 11-5.1). From this information we deduce that

PA"'I’: = 4(p1+yatvs)
PFy, = 22y, —ys—¥s)
PFV’: = 2(2py—p; —a).
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TABLE 11-6.1

Transformation of the D,, hybrids under Oy for all
R of 24,

E C, C: Cha Cwn Cie Gn Sy S : Tva Oyn Gy

¥a ¥ ¥s Ys ¥a ¥ Ys ¥ P Ys ¥ Y3 Y
¥a ¥ ¥s 1 Y P2 v Y Y2 ¥1 L Ys ¥
Ya ¥s ¥: ¥a ¥ L 4 Ys Vs ¥ ¥ Vs Y1 ¥z

Applying P47 to v, and y, is not necessary since the same combination
as P4y, will be produced. The two combinations obtained from P¥ are
by inspection, linearly independent and a third combination which can
be found by applying P¥ to y,, will be a combination of these two.
If the combinations are normalized with the assumption that

f‘Pﬁ’j dr = d,,,

then we have:
(w1 +vatva)/+/3 (belonging to 1)

and (29, —ps— i)/ /6
(Zys——va)/+/6

Under the &, point group, an s-orbital belongs to 'Y and the pair
of p-orbitals p, and p, belongs to I'*. If these orbitals have been used
to construct the three hybrid orbitals (sp* type), then we can

} (belonging to I'¥).

/ €y, {Contains a,,)

=

S
S
A
/
/
==
2

(eontains a,)

'_______
\

B \, Oy, (contains o)

Fia. 11-5.1. Directions of the hybrids and x and y axes for an AB, molecule belonging
to Q,h.
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immediately identify, since it is the only one of '+’ symmetry,
(v1t+v:+vs)/v/38
with the s-orbital, i.e.
8 = (1 +v:+va)/v3. (11-5.1)

We can also identify the other two combinations (2y; — ;3 —1v,)/4/6
and (2y,—y; —y;)/+/6 with two normalized combinations of p; and p,
orbitals, since both pairs form a basis for I'F, i.e.

(29; —va—y3)fv/8 = L(al+b)¥a,p,+b,p,)
(2ya—v1—vs)/v/6 = E(ad+bD)Hasp, +bsp,)-

The z and y axes are shown in Fig. 11-5.1. To establish the values of
the coeflicients @,, a;, b;, and b, it is necessary to investigate the detailed
effect of one or more of the transformation operators O, of 2,, on the

pair of combinations.
The operator O, _ (see Fig. 11-5.1 for the definition of the o, plane)

leaves {2y, —y,—1v;} unchanged, therefore it must leave (a,p,+5,p,)
unchanged: O..(4:p. +b,,) = &P, +b;p,. (11-5.2)
But O, p, = p, and O, p, = —p,, hence:

0,..(@,p, +b:p,) = a,p,—b;p, (11-5.3)
and by comparing eqns (11-5.2) and (11-5.3) we see that 5, = 0,
Therefore (2vi—yi—ws)/v/6 = +p,

and since, by inspection of Fig. 11-5.1, y,, —1;, and —y, have positive
x componenta, we take the positive sign, i.e.

P> = (291 —y: —va)[1/6. (11-5.4)
Now consider the operator O, . This leaves (2y;—y,—v,), and
consequently (a,p,+b;p,), unchanged. But
ocvbpas = (—Pm+\/3pv)l2
and 0..p, = (v3p.+p,)/2
and hence
(asp.+-bsp,) = {(—as+1/3b,)p, +(1/3a;+b4)p, }/2.

Since p, and p, are linearly independent, we can equate the coefficients
of p, and likewise those of p, and obtain a, =: byf4/3. We conclude that

(2ya—v,—vs)/+v/8 = £(p.++/3p,)/2.
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Since y; and —y, have negative y components (i, has none), we take
the negative sign, i.e.

(2ys—y1—wa)/+/6 = —(p.,+/3p,)/2.
Combining this equation with eqn (11-5.4), we get

Py = (va—pa)/ V2. (11-5.5)
Eqns (11-5.1), (11-5.4), and (11-5.5) may be brought together in the
single matrix equation
8 VAVE IR VAVE IR VAVE R T B2
Poff = |[2/v6 —1/r/6 —1//6]l] v,
P, 0 12 12 ||y,
which on inversion leads to
vl [[Uv3 1vs 13 | s
paf| = || 2/v6 —1/4/6 —1/4/6 Ps
v 0 —1v2z vz || |p,
1/4/3  2/v/6 0 8
Yvs —1ve —1fvallfip.|.
vs —1/ve 1/yv2 ||[p,

{Note that since the 3 x 3 matrix is orthogonal, ite inverse is simply its
transpose.) So we finally achieve the following mathematical expressions

fOI’ Y1 Ya, and Ys: v = (\/28+2P=)/1/6’
¥ = (V25—p,—+/3p,)/v/6,
v; = {128 —Pa+\/3pv)/'\/6'

In this particular example we could have avoided some of the labour
involved in finding the combinations of hybrid orbitals which are equal
to p. and p,, by using the €, point group (to which the molecule also
belongs). For this point group, the two-dimensional representation, the
cause of all the trouble, can be expressed as two eomplex one-dimensionl
representations. The orbitals p, and p, are then just as easy to obtain
as the s-orbital. Any complex numbers which result are eliminated at
the end of the treatment by addition and subtraction of the orbitals
formed. This is the technique which was used in § 10-7 to find the
m-molecular orbitals of the trivinylmethyl radical. It is, however, of
no avail when dealing with point groups which have three-dimensional
irreducible representations as in our next example, CH,.
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Cae
F1a. 11-5.2. Directions of the hybrids and z, y, and z axes for CH,.

For methane we have seen that there are four hybrid orbitals
Y1, ¥ ¥s and v, (see Fig. 11-5.2), each composed of an s-orbital
belonging to I™: and three p-orbitals p,, p,, and p,, belonging to 7
for the choice of x, y, and z axes see Fig. 11-5.2. Using the relevant
projection operators, we obtain the following combinations:

Phy, = 6(y,+vs+ys+vd)

PTryp; = 2(3y,—¢a—¥a—va)

PT"P! = 2(— 1+ 3P —ys—yo)

PT"P; = 2(—yp1—y2+3va—w).
The last three combinations are linearly independent and the normalized
combinations are:

(it t+vatvd/2 (belonging to ')
(Byy—wa— s — )12 )
(—vi+3p—va—y)/4/12 (belonging to 'y,

(*?1—?’24“3'!’:‘—1[’4)/\/12
We can therefore establish that

(vatyst+vatv)f2 =5 (11-5.6)

(39, —ws—ys— w12 = L(af+bi+e})¥a,p.+b,D, +c1P,)
(11-5.7)
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+(a3+53-+¢2)~Hasp, +b:p, +¢sp,)
(11-5.8)
(=¥ —va+3ys—w)/v/12 = (a3 +b]+c5)Hayp, +b,5p, +¢5p,)
(11-5.9)
Under the operator O, (see Fig. 11-5.2 for the C,, axis), the left
hand side of eqn (11-5.7) is unchanged and since

(=1 +3ys—wa—w,)f4/12

OcuP: =P OcPy =Pa  Oc,p, =,
{@,pa+,p,+c,p,) becomes (@,p, +5,p, +¢,p,). Therefore a, =0,b =a,,
¢, = b, and

Byi—vi—vs—vi)/v12 = £(p.+p,+p,)/3.

Since, by inspection of Fig. 11-5.2, ¢, and — vy, have positive z com-
p.onents and the z components of y, and y, cancel, we take the positive
sign, i.e.
Bvi—va—vs—vd/V12 = (P, +p,+p,}/v3. (11-5.10)

Under the operator O, , the left hand side of eqn (11-5.8) is un-
changed and since Oc,,P: = —Pu Oc,,Py = Po Oc,,P: = —p,, We
find that (asp,+b;p,+c,p,) becomes (—a,p, +&p, —¢5p,). Therefore,
@3 = by, by = —¢,, ¢4 = —a, and

(=91 +3va—y—w)/v12 =+ (p, +p,—P:)/+/3.

Inspection of Fig. 11-5.2 justifies the negative sign and we have

(=i +3vs—vi—vd)/v12 = —(p,+p,—p,)/V3.

(11-5.11)
Consideration of eqn (11-5.9) and the effect of o
. perator O._ on p,, p,,
and p, leads to - P B
(=vi—ws +3vs —)/+/12 = (p.—Pp, —p,)/ V3. (11-5.12)
Eqns (11-5.10) to (11-5.12) can be solved to yield Pe: Py, and p,:
P: = (y1—vst+ya—py)/2
Py = (¥1—¥a—vatp,)f2 (11-5.13)
P. = (Y1 +y:a—ys—v4)/2
and these equations together with eqn (11-5.6) can be written as
8 3 3 3 3| ([
Pa T -3 3 =%y

Py P =3 —3 | lvs
P: i i '_i _i Y
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or ¥ 1 e
Vafl —% + -3 P«
vl 13 —% —t &) [p
17 + —t —% Ps

—* _* i Pa
* _* '—i' Py
(note that the 4 x4 matrix is orthogonal, so that its inverse equals its
transpose). Hence we cobtain the final relationships:
v1 = (8-+Pe+P, +p,)/2,
vs = (8—P,—P, +p.)/2,
Yy = (S +P="'pv _Ps)l2! (11'5-14)
Ys = (B —Pe +P' ——pl)lz

]
1
3
1
I S S 1L
]
%
1

‘We saw in § 11-3 that a set of equivalent tetrahedral hybrid orbitals
could also be constructed from a set of s, d.,, d.,, and d,, orbitals.
Mathematical expressions for these hybrids (sd®) can be obtained from
eqns (11-5.14) by changing p. to d,,, p, to d,,, and p, to d,,. That
these are the correct changes can be deduced from the fact that the
operators O, O ,and O, acting on the column matrix

Pa
Py

P,

produce, in each case, a matrix which is identical with the one obtained
when the same operator acts on the column matrix

d,.

A, ||-

d,y
For example, P 0 0o —1|ip.
O, (I ]| =11 0 ofllp,
P: 0 —1  Offlr,
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and
4,, 0 o —1|jd,,
ocllauf=f1 o offa.l.
d,, o —1 ofq,

11-6. Relationship between localized and non-localized
molecular orbital theory

Localized MO theory using hybrid orbitals is essentially a special
case of non-localized MO theory. In the latter theory, if we construct
MOs from AOs scattered over the entire molecule, we do not need
to make any initial assumptions about which AOs are being used to
bond particular atoms together, nor for that matter need we consider
the symmetry properties of the AQs which are used. All these things
will be taken care of by the quantum mechanical method used to
determine the coefficients of the AQs in the linear combinations: if an
AQ is of inappropriate symmetry, its coefficient will turn out to be
zero and if an AO plays a small role in bonding, its coefficient will turn
out to be small. However, it is clear that the major contribution to a
non-localized MO will be similar to the localized MO formed from
appropriate hybrid orbitals, since both, in the long run, have to describe
the same thing: the electronic distribution in the bonding regions. We
can therefore utilize our knowledge of hybrid orbitals when we construct
non-localized MOs by ignoring those AOs which on the basis of the
simpler theory would not contribute significantly. Such an approach
not only conforms with our intuitive understanding of bonding, but
also, by cutting out that which is irrelevant, saves time in carrying out
the calculations.

We will return to the more general MO theory again in the next
chapter, The key virtue of this theory is that, unlike the hybridization
approach, it affords a mechanism for making direct energy calculationsa.

As a final note, it should be emphasized that like the phenomenon of
resonance, hybridization is not a real physical process (atoms don’t
hybridize any more than molecules resonate). It is a man-made process
for describing an already existing situation, the molecular bond, when
the simple model using single AOs fails to worlk.

PROBLEMS
11.1. Determine the irreducible representations of 34 to which f-orbitals belong.

11.2. Bhow that for & molecule of octahedral symmetry the o-bonding hybrid
orbitals on the central atom are composed of six atomic orbitals: s, p,, py,
Pz dzt, and das_ys.
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11.3. Detormine what type of w-bonding hybrid orbitals can be formed for the
square planar AB, molecule which belongs to the @4, point group.

11.4. Show that for the square planar AB, molecule a poasible set of four o-
hybrid orbitals on A is composed of the atomic orbitals: 8, det_ys, Pz, and
Py Find explicit expressions for the four hybrid orbitala.

12. Transition-metal chemistry

12-1. Introduction

SiNcE the 1950°s there has been a dramatio revival of interest in
inorganic chemistry. This has largely been due to the synthesis of
many transition-metal compecunds and complexes and the development
of theories to explain their properties. Nearly all of these compounda
have a high degree of symmetry and in this chapter we see how the
group theoretical rules which we have previously developed can reduce
the effort involved in calculating their properties. In some cases the
reduction in labour is quite startling.

Although strictly speaking the transition metals are defined as those
which, as elements, have partly filled d- or f-shells, it is more common
also to include in the definition elements which have partly filled d- or
f-shells in any of their commonly occurring oxidation states. The atoms
or molecules which are bonded to the metal in a transition metal
compound are called ligands.

In broad terms, there are two very different theories which have
been used to interpret the properties of transition-metal compounds;
MO theory and crystal field theory. -

MO theory is the more general of the two and, in the long run, the
one most capable of giving the best results. However, in its application,
the calculations which are entailed are very lengthy and only now,
with the introduction of high-speed computers, are reliable results
being produced. In § 12-2 and § 12-3 we will see how valuable sym-
metry principles can be in a MO treatment of octahedral MX, and
tetrahedral MX, molecules. We choose these two types of molecule
because they occur often in transition-metal chemistry and also
because they are prototypes to which many molecules of lower sym-
metry can be referred. In § 12-4 we construct MOs for ferrocene, which
is an example of a sandwich compound. Here the ligands are carbocyclic
rings and so we are able to build upon the techniques which were
developed in Chapter 10 for such rings.

Crystal field theory has its origins in Hans Bethe’s famous 1929
paper Splitting of terms tn crysials. In that paper Bethe demonstrated
what happens to the various states of an ion when it is placed in a
cryatalline environment of definite symmetry. Later, John Van Vleck
showed that the results of that investigation would apply equally well
to a transition-metal compound if it could be approximated as a metal
ion surrounded by ligands which only interact electrostatically with the
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ion. One of the key elements in the application of crystal field theory to
transition-metal compounds is the construction of so-called correlation
diagrams. These diagrams relate the splitting of the electronic states
of the transition-metal ion under the perturbation of a set of ligands
to & parameter which reflects the strength of the electrostaiic interaction
between the ion and the ligands. They resemble the well known corre-
lation diagrams for the formation of a united atom from the separated
atoms of a diatomic molecule and like them depend on a non-crossing
rule for states of the same symmetry and multiplicity. In § 12-5 and
§12-6 we develop some necessary preliminary steps before con-
structing, in § 12-7, a correlation diagram for a metal ion which has
two d-electrons in the valence shell and is surrounded by an octahedral
or a tetrahedral set of ligands. In § 12-8 and § 12-9, the way in which
correlation diagrams can predict the spectral and magnetic properties
of transition-metal compounds and complexes is described.

It is clear from the start that the approximations involved in applying
crystal field theory to transition-metal compounds are extreme and
the results of MO theory confirm this. In very few cases can the ligands
be considered simply as point charges or point dipoles which interact
only electrostatically with the metal. In general the electrons of the
ligands will be distributed throughout the molecule and there will be
covalent (electron sharing) as well as electrostatic interactions. How-
ever, crystal field theory can, to some extent, be adapted to handle this,
the real situation, by reinterpreting the parameters which occur. We
let these parameters become strictly semi-empirical quantities and
give them values which can no longer be ascribed solely to electrostatic
interactions. This adaptation is called ligand field theoryt and it is
briefly considered at the end of the chapter.

Two excellent books which offer useful background material to this
chapter are: An introduction to ligand fields by B. N. Figgis (published
by Interscience Publishers) and dtomic and molecular orbital theory by
P. O’D. Offenhartz {published by the McGraw-Hill Book Co.).

12-2. LCAO MOs for octahedral compounds
Let us consider the construction of molecular orbitals from linear
combinations of atomic orbitals (LCAO MOs) for an octahedral molecule
1 Some authors have used this term to describe all aspecta of the manner in which

an ion or atom is influenced by ligands. With this definition, crystal field theory is a
special case of ligand field theory and the latter is indistinguishable from MO theory,
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or ion MX, where M is a transition metal and the ligands X are bonded
solely to M. We begin by selecting the AOs to be used. The transition
metal in its ground state will have an inner core of electrons with a
noble-gas electronic configuration, which we will assume does not
participate in bonding, and & number of valence electrons which
occupy nd- and (n-+1)s-AQOs. Since, for the transition metals, the
(n»-+1)p-orbitals are close in energy to both the nd- and (n+ 1)s-orbitals,
we will assume that the metal M contributes five d-, one s-, and three

-

F1a. 12-2.1. p-type ligand orbitals for an octahedral MX, compound.

p-orbitals to the MOs. Of course, the selection of AOs of M is made
easier by knowing which orbitals participate in the localized molecular
orbital bonding scheme (see the previous chapter). We will assume
that each ligand X contributes one s-orbital and three p-orbitals. We
will distinguish the ligand orbitals from the metal orbitals by a sub-
seript (1, 2,... 6) which indicates the ligand with which they are
associated. The three p-orbitals on each X may be given the symbols
o, m, and =’ and associated with a set of three mutually perpendicular
veotors as shown in Fig. 12-2.1. The o-type p-orbitals are chosen to
have their positive lobes directed towards M.

We therefore have a grand total of 33 atomic orbitals: s, p,, p,, P,
des, dps_pp, do,, Aoy, dy,; 8, 0, 7, 7y (B = 1, 2,... 6). Application of the
LCAO MO method without applying the principles of symmetry
would therefore lead to an equation (see eqn (10-3.5))

det(Hs' —£8,) =0, (12.2.1)
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which involves a 33 x33 determinant. Fortunately, by using the
techniques we have previously discussed, we can avoid the Herculean
task of solving such an equation. What we do is to create linear com-
binations of the 33 AOs in such a way that they form bases for the
irreducible representations of the &, point group to which the molecule
belongs. Using these symmetry adapted combinations in place of the
original 33 AQOs immediately leads to the factorization of eqn (12-2.1),
{cf. the benzene problem in § 10-6).

To find the symmetry adapted combinations we first consider the
application of the transformation operators O, to the 33 atomic
orbitals. We see at onoce that for all symmetry operations R of the
O, point group, the central atom M js left unchanged and consequently
any O, will only transform metal orbitals into metal orbitals (or
combinations of metal orbitals) and ligand orbitals into ligand orbitals
(or combinations of ligand orbitals). Thus, we can immediately reduce
I'49 (the reducible representation using all 33 atomic orbitals) to the

form: I‘Ao —_ Pu @ Px

where I'y is a reducible representation using the nine atomic orbitals
of M as basis functions and I'* is a reducible representation using the
24 atomic orbitals of the six ligands as basis functions.

The further reduction of I'¥ is an identical problem to that discussed
in §11-2. In that section we classified the atomic orbitals according
to the irreducible representations of various point groups. For @, we

found 8 belongs to I,
(Ps» Py Py) belongs to | CRTR

(d,s, dps_ys) belongs to I'%s,

(ds,- d,,» d,,)  belongs to T2,

Hence we can write
™ = P @ [T @ T'% @ [T,

The further reduction of I'* is more complicated. In the first place
no transformation operator O, can change a ligand s-orbital into a
ligand p-orbital (or combination of ligand p-orbitals), therefore the
s-orbitals themselves form a representation I of ¢@,. Furthermore,
for the particular choice of orientation of the p-orbitals (or vectors) in
Fig. 12-2.1, no O, can change a ¢-type p-orbital into a =-type one
(or combination of w-type p-orbitals), so we have two further repre-
sentations I and I'" and overall we can write

I*=rreloel
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To reduce I'*, I'?, and I'" we must apply O, for all R to (s,, &,... 8¢),
(a1, 04,... a5} and (m, m, 7s, 75,... 7, 7) Tespectively and thereby
find y*(R), x°(R), x"(R) for all R. Using the equations:
Ogd, =‘§:“D;‘—;(R)¢, (or its vector analogue)
S=1
and ¢oris
2Ry = 2 DiR),

€

this is a straight forward procedure and we obtain

Oy, | E 8C, 3C, 6C, 6C; i 8S, 3g, 65, 6o,

£Cy| 8 o 2 2 0 0 O 4 o0 2
2(C)| 6 o0 2 2 0 0 O 4 0 2
€)1z o —4 0o 0o 0 0 o0 0 0

The decomposition rule (eqn (7-4.2)) in conjunction with these results
shows that I* = I'% @ I'® @ [T,

I = I @ I'fe @ T,

" =ITw @ I'T% @ [T @ [T,

What do these symbolic equations mean? Consider for example the
first one. This shows that it is possible to find a new basis for I in
which the basis functions are linear combinations of s;, 8,,... 84 such
that the matrices of I'*, D*(R), have a completely reduced form. There
will be one linear combination which is a basis for I'*'¢, two linear
combinations which form a basis for I'*s and three linear combinations
which form a basis for I'"*». The other two symbolic equations can be
interpreted in the same fashion.

The actual linear combinations which reduce I'*, I'Y, and I'" could
be found by the projection operator technique of § 7-6 but because
of the large number of symmetry operations contained in ¢, and
because of the problems connected with the multi-dimensional repre-
sentations (similar to those encountered in § 11-5), to do so would
require much time and even more patience. Fortunately, we can find
the cerrect combinations by inspection.

Any symmetry operation of @, simply permutes the AOs s,, 8;,... 84
amongst themselves, so that if O, is applied to (8,185 +83 18, +8; 1+ 84)
only the order of the orbitals within the bracket is changed and

Op(8, +83 -8y +84 185 +84) = (8; +84+8; +8,+8518,)
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for all R. Consequently the normalized basis function (assuming
fé.$; dr = d,,, ¢, = any ligand orbital) for the identical representation

‘18 v, = (5,185 48, +8, + 85 +8,)/+4/86.

To find a pair of linear combinations of s,, s,,... 8¢ that form a basis
for I'E+ (and there are many), we can look for a pair which mirror the
I'®e AOs of the central atom, i.e. d,s and d,._,. The d,,-orbital has the
symmetry of the expression 3z*—r* = 2z*—z3—y? and it is clear that
the s-orbital combination which reflects this ist}

vE,m) = (285 +28,—8, —8, —8; —8)/4/12.

The d,s_,» orbital has positive lobes along the positive and negative
z-axes and negative lobes along the positive and negative y-axes,
therefore this will be mirrored by the combination:

'Ph,u) = (8,18, —a,——s‘)/2.
The three combinations of s,, 8y,... 8, which form a basis for '™

can be chosen to behave like the p,, p,. p, AOs of M (since these also
form a basis for I'**), hence, by inspection,

YT, o = (8. —B4){4/2 (like p,)

Vi = (8—84)/V/2 (like p,)

¥r,m = (8 —8g)/v/2 (like p,).
That these combinations do indeed behave like their central atom
counterparts may be verified by applying the operators O,. One can
also confirm that, like the AOs of M, the combinations are orthogonal

to each other.

It is clear that the required combinations of ¢y, 7y,... ¢, can be
obtained directly from the previous combinations by replacing s by .

For the representations based on the =- and ='-orbitals, we have to
find combinations for I'7ts, 7%, [T« and I, The I'*** combinations
must mirror the p,, p,, and p, AOs of M. The ligand orbitals =y, m,, s,
and m, all point in the x direction, =}, 7;, m,, and- =g all point in the y
direction and =,, =y, s, and «, in the z direction. Hence suitable
normalized combinations are

vr w0 = (Mt mitmstmg)/2 (like p,)
¥r 0 = (m+mtagt+me)f2 (like p,)
'Pi'l.‘m = (my+m+m+ ”’4)/2 (like p,).

1 The aet of n funoti which together form a basis for the n-dimensional irreducible
represontation I'* will be labelled wyu 1), Pucais--- Yu(ny- This notation does nol imply
that there is an irreducible representation I'#(!,
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Likewise, comparing the I'"* combinations with d,,, d,,, and d,,, we

find Yhw = (M—m+m—mdf2 (ke d,,)
VI, = (my—mat g — ) /2 (like d,,)
YTy, = (my—ma+ms—mg)[2 (like d,,).

For the I’ and I'™» combinations there are no central atom
counterparts and consequently, as they therefore do not ‘mix’ with
the central atom orbitals, they do not take part in the bonding. None-
theless, appropriate I'’* combinations can be found. The axial vectors
R,, R,, and R, (see § 9-6) form a basis for I'"*¢ and using this piece of
information, we find the following I'Ts gombinations which mirror
R, R, and R,:

vh,m = (m—m—m+m)/2  (like R,)
9o, ) = (m — 7y — 75+ me)/2 (like R}
¥ @ = (m—m—m+m)f2 (like R,).

The three IT** combinations must be orthogonal to the previous nine
combinations. Such a get is

'P;‘,.(l) = ("7;'*'7’;—":—"1)/2
Pr, @ = (m1+ms—ms—mg)/2

Y = (i ma—my—m))/[2.

What we can now say is that if we replace the initial basis of 33
atomic orbitals by the nine AOs of M and the 24 combinations of
ligand AOs (Y, lp;;;.“, t=01290 t=12389vy . vrmi=12
VT, VI VT P00 Yoo 3 =1, 2, 3), the determinant of
eqn (12-2.1) will be in block form and the equation can be factorized.
The reason this happens is the same as in the benzene example (see
§ 10-6): a combination of the vanishing integral rule (§ 8-4) and the
fact that the effective Hamiltonian belongs to I'' (the totally sym-
metric representation of any point group).

Thus we will have:

(1) A 3x3 block corresponding to I which will produce three
non-degenerate energy levels (a,,-type) with MOs formed from a
metal s-orbital, a combination of ligand s-orbitals (v, ) and a
combination of ligand ¢-type p-orbitals (yZ%,).

(2) Three equivalent 4 x4 blocks corresponding to I'"*=. One block
will produce four energy levels with MOs formed from a metal
p.-orbital, a combination of ligand s-orbitals {yp, ;). & combi-
nation of ligand o-type p-orbitals (y7, () and a combination of
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ligand m-type p-orbitals (yz, (1)) The other two blocks will
produce identical energy levels and values for the coefficients of
the symmetry adapted basis functions (which are p,, YT, (e
¥7,,» ¥r, s in one case and p,, VI, YTy, ¥r,,> in the
other). Consequently we need only solve eqn {12-2.1) for one of
the blocks. Overall, we will have four triply-degenerate energy
levels (¢,,-type).

(3) Two equivalent 3 x3 blocks corresponding to I'®s, one will
involve dus, ¥z ), and yk ) and the other dg .., Y&, 2, and
¥&,m- They will both produce identical energy levels and
identical values for the coefficients of the symmetry-adapted
basis functions in the final MOs. Again, it is necessary to solve
eqn (12-2.1) for only one of the blocks. Overall we will have three
doubly-degenerato energy levels (e,-type).

(4) Three equivalent 2 x2 blocks corresponding to I'"*, one will
involve d,, and gz, ), another d,, and ¥r, 2 and a third d,,
and yr, (5. These three blocks will lead to identical energy levels
and ecoefficients. Putting the results together we will have two
triply-degenerate energy levels (¢,,-type).

(5) Bix 1x1 blocks, three corresponding to "¢ and three corre-
sponding to I'"*+, These will provide one triply-degenerate level of
each type (¢,, and #,,) and the final MOs will only involve ligand
wm-type p-orbitals and will simply be the symmetry adapted
combinations themselves {(v7,, 0 and 1,3 =1, 2, 3).

The upshot of all this is quite astounding: a problem which initially
involved a 33 x 33 determinant has been reduced to one involving one
4 x4, two 33 and one 2 X 2 determinants.

This is as far as we can go with symmetry arguments alone, the
next step involves calculating, or estimating in a semi-empirical
fashion, the required matrix elements H3f and ;. This is beyond the
scope of the present book, however, once it is done eqn (12-2.1) can be
solved and the energy levels determined. Radical approximations are
often made in finding Hiy and S, e.g. the off-diagonal elements
H5 (j # k) are frequently made simply proportional to the corre-
sponding overlap integrals 3,,, and therefore the reader is advised to
treat such LOAO MO results critically. Only recently have ab initio
LCAO MO calculations been attempted for transition-metal com-
pounds.t

The energy-level diagram shown in Fig. 12-2.2 is a summary of the

t See, for example, the calculation on NiFi~ by J. W. Moskowitz, C. Hollister, C. J
Hornback, and H. Basch (Journal of chemical physics, 53, 2570 {1970)).
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2a,,

Central atom Molecular orbital Ligand energy
energy levels energy levels levels

¥1a. 12.2.2. The energy level disgram for an ootahedral MX, molecule or ion,

conclusions given above. Though this diagram is only schematic,.t.he
order of the energy levels is that accepted by most inorganie chemists.

12-3. LCAO M0s far tetrahedral compounds

We will not consider the LCAQ MO treatment of the tetrahedral
molecule MX, in detail, since the steps involved are essentially the same
as those for the MX, case. The central atom M can use 8-, p- and
d-orbitals and for the ", point group these are classified as follows:

8 belong to I',

(da d,s_,s)  belong to I'%,
(Pe» Pys P.)  belong to I'Ts,
(dys dgys 4,,)  belong to T'T2,

If we restrict ourselves to only o-bonding, the four X‘liga,nds will
each use a s-orbital and a o-type p-orbital (one which points towards
1 These two levels are only separated for visual convenienoce.
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M). These ligand orbitals form a basis for the reducible representation
I'® of F,, which can be broken down as:

I'*=r"er"

I*=TI4g@ro™

I =r4ern

The symmetry adapted linear combinations of the eight ligand

orbitals which form a basis for these irreducible representations are
found in the same way as in the octahedral MX, case. They are:

vi, = (8,+85+83+8,)/2,

Vi = (8,8 +83—8,)/2 (like p,),

!“’?!',(2) = (31—5!_53 —I—S‘)/2 (like Py):

Yim = (8, +81—83—8,)/2 (like p,),
and analogous combinations of o, a;, 0y, and o for ¢4, ¥7,u)» Y1,
and y7,) 1
N Thus, neglecting the use of any n-type p-orbitals on the ligands, we

ave:

(1) Three non-degenerate a,-type energy levels with MOs formed

from the s, 44, and %, orbitals.
{2) One doubly-degenerate e-type energy level, where the molecular
orbitals are simply the d,» and d_s_,. AOs of M.

(3) Four triply-degenerate ¢,-type energy levels, where for each level
the three degenerate MOs are composed of combinations of (a)
Por dyss Y1, 80d Y1, a)s (D) Pyr Qeyr ¥ ge) 80dYE,ca), (€) Psr duys
Y7, 8nd ¢7 ).

There have been several ad tnito LLCAO MO SCF calculations on
tetrahedral transition-metal complexes: for example, see the work of
Hillier and Saunders (Molecular physics 22, 1025 (1970)), and
Demuynck and Veillard (Theoretica chimica acta 28, 241 (1973)) on
nickel carbonyl Ni(CO),.

where

12-4, LCAD MOs for sandwich compounds .

An important class of organo-metallic compounds are the so-called
metal-sandwich compounds. These compounds have the formula
(C,H,);M and consist of a transition metal atom M sandwiched sym-
metrically between two parallel carbocyclic ring systems, e.g. ferrocene,
or, to give it ite proper name, dicyclopentadienyliron [(C H,;),Fe], and

1t The X atoms are numbered in the same sense as the hydrogens in Fig. 11-5.2. The
reader should be able to see for himeelf why the set of equations for ¥i,, ¢F, 1 ¥r,m,
:111;:1 ¥r, 4 i8 identical in form with the set of equations given by eqn (11-5.8.) and :aqn

-5.13).
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dibenzenechromium [(CeH,);Cr]lt As an example of the construction
of MOs for this type of compound we shall consider ferrocene.

Ferrocene, if we assume the two rings to be staggered,] belongs to
the point group @, (see Fig. 3-6.4) and we begin by forming linear
combinations of the ten m-type p-orbitals of the two carbocyclic rings
which belong to the irreducible representations of 23. We then combine
these 7-MOs with the metal AOs, matching the symmetries as we do
s, in order to create MOs for the entire system. We exclude from our
treatment any possible bonding between the iron atom and the rings
through use of the o-electrons of the latter.

The ten 7-type p-orbitals form the baais for & reducible representation
I'" of the @, point group with the following character:

Dya IE 2C, 2C% s5C; i 28}, 28,, 50,

x'(c‘)|10 0 0 o0 0 o 0 2
and hence, using the standard reduction procedure:
" — [ @ T4 @ T%u @ [®n @ [0 @ [P,
The exact form of the linear combinations which belong to these six
irreducible representations can be found by using the techniques which

were applied to benzene in § 10-6. If the w-type p-orbitals are labelled
88 @1, bgo--- Ps» Prs Pus-.- b5 (see Fig. 12-4.1) and have their positive

x

View from above

F10. 12.4.1. Directions and labels of the w-type p-orbitals of ferrocene and a set of
@, ¥, and z axes.

+ Dibenzenechromium was discovered by Hein in 1919 but not recognized as a sand-
wich compound until the 1950’s.

+ Experimentally it is not clear whether the staggered or eclipeed form is the more
stable; they are very close in energy. Most derivatives of ferrocene show the eclipsed
conformation in the solid state, but there is evidenoe that ferrocene itaelf is staggered.
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lobes directed towards the opposite ring, then the normalized »-MOs
are:
Y4, = (¢1+¢a+¢a+¢(+¢5+¢i+¢;+¢;+¢;+¢§)/'\/10,
va,, = {($1+dat st it de) — (b1 + b1+ b+ di+ ¢5)}/ /10,
YE, 1 = Y1y
YE, 0 = Y2ty
YR, 0 = P1— Vi
YE, () = Ya—VP1,
Y&, = Pst+¥s
vE, m = Yty
VYE, 1) = Vs—¥i,
YE, (2 = Ya—Vss

where

Y1 = {¢1+(c0s w)d; +(cos 2w)d;+(cos 2w)d,+(cos w)ds} /5
P2 = {(8in W), +(sin 2w)d; — (sin 2w)d, —(sin W)}/ /5
¥s = {$:1+(c08 2w)d; +(c08 W)y +(co8 w)d, + (008 2w)ds}f1/5
¥a = {(sin 2w)¢; —(sin w)d, +(sin w)d, —(8in 2w)¢;}/+/5
and w = 2w/5. ¢, is obtained from y, by replacing ¢, by ¢, =1, 2,...
B.
For the metal atom, iron, the valence orbitals are the five 3d-

orbitals, the 4s-orbital and the three 4p-orbitals. They belong (see
Table 11-2.2) to the following irreducible representations of Dy

48, 3d,. belong to I,
(3d,, 3d,.) belong to I'Es,
(dyys 3d,2_4n) belong to I'F1,
4p, belongs to ',
(4p,, 4p,) belong to I'Fis,

The original set of 19 arbitals would have led to a 19 x 19 determinant
in eqn (12-2.1), but now instead, by using the equally valid set of
symmetry adapted orbitals, we have:

(1) A 3x3 determinant corresponding to ' which will produce
three non-degenerate energy levels (a,,-type) and a corresponding
set of MOs formed from combinations of the 4s, 3d,., and Va,,
orbitals.

(2) Two equivalent 2 x2 determinants corresponding to I'*'». One
determinant will produce two energy levels and two MOs formed
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from the 3d,, and yg, () orbitals (that this is the correct MO
of the T'F1 pair to match up with 3d_, is verified by inspection of
Fig. 12-4.2, i.e. yg () is positive (negative) where 3d,, is positive
(negative)). The other determinant will produce an identical set
of energy levels with molecular orbitals formed from the 3d,,
and yg (s orbitals (the values of the coefficients of these com-
ponent functions will be identical with those obtained from the
first determinant). Together, there will be two doubly-degenerate
energy levels of the e, ,-type.

(3) Two equivalent 2 x2 determinants corresponding to I'®w, one
‘mixing’ the 3d,:_,» and g, (;) orbitals and the other ‘mixing’ the
3d,, and yg, (5 orbitals (see Fig. 12-4.2 for the matching).
These will provide two doubly-degenerate energy levels of e,,-
type.

(4) One 2 x2 determinant corresponding to I, The two MOs
formed will be mixtures of the 4p, and y,, orbitals and the two
energy levels will be non-degenerate and of the a4,-type.

(6) Two equivalent 2 x2 determinants corresponding to I’®'v, one
‘mixing’ the 4p, and vy, orbitals (see Fig. 12-4.2) and the
other ‘mixing’ the 4p, and yg, (s orbitals. These will lead to
two doubly-degenerate energy levels of the e,,-type.

{6) Two equivalent 1 x 1 determinants corresponding to I'** which
will produce a doubly-degenerate energy level of the e,,-type.
The MOs will be the pure ligand MOs yg, (1) and yg, (s (there are
no metal orbitals of I'** symmetry) and oonsequently they
do not participate in the bonding of the iron atom to the
rings,

If certain assumptions are made about the matrix elements HSY and
8,; in these determinants, then the energy levels for the valence
electrons in ferrocene can be calculated. An energy level diagram,
based on the results of such a calculation, is shown in Fig. 12-4.3. This
diagram implies that the electronic configuration for the 18 bonding
electrons of ferrocene is laj, 1ai, le}, lei, 2a%, le3,, each individual MO
accommodating two electrons of opposite spin. The reader is warned
that there is much disagreement about the exact order of the MO
energy levels in ferrocene since they depend rather critically on the
assumptions made about Hg* and §,,. In 1972, however, Veillard and
co-workerst carried out a strictly ab initio calculation and made no
such assumptions. Their results are likely to be more reliable than the
previous ones.

1 M.- M. Coutiére, J. Demuynck and A. Veillard, Theoretica chimica acta 27, 281 (1972).
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F1ra. 12-4.3. An energy level diagram for ferrocene.

12-5. Crystal field splitting

The central concern of crystal field theory is what happens to the
electronic states of an ion when it is placed in some perturbing sym-
metric environment. If we assume that a set of ligands placed sym-
metrically about a transition-metal ion interact only electrostatically
with the electrons of that ion, then the answer to this question is
relevant to our study of transition-metal compounds.
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We begin by considering an ion which, outside of a totally symmetric
closed shell (noble gas) electronic configuration, has a single electron
in a d-orbital. If the ion is in its free state, then the d-orbital could
equally well be any one of the five degenerate ones d,s, d_ys, d,,, d,,,
and d,,. If, however, the ion is placed in say an octahedral environment,
then the five d-orbitals are no longer equivalent since, as we have
already seen, they belong to different irreducible representations of the
0, point group i.e. the first two belong to I'*s and the other three to
I'"». They will therefore interact with their octahedral environment
differently and where there was once a single five-fold degenerate
energy level for the electron, there will now be two possible energy
levels, one doubly degenerate and the other triply degenerate. We say
that the energy level has been split and we represent the process

N ,,

free ion ¢, environment

diagrammatically as shown. The new energy levels are labelled, in
lower case letters, with the irreducible representation with which they
are associated.

Likewise, in a tetrahedral environment the five d-orbitals will be
split into a doubly-degenerate e-pair (d,:, d;s_,:) and a triply degenerate
ty-set (d,,, d,, d,,).

In §11-2 we showed how all AOs can be classified according to the
irreducible representations of the different molecular point groups.
Therefore, if we consult Table 11-2.2, we can determine the splitting
of the energy level of a single electron for any particular perturbing
environment,

If we have more than one d-electron outside a closed shell electronic
configuration, then in general there will be several electronic states for
the free jon. These states will have different electronic energies and
will be characterized by their term symbols: ***'7, (see Appendix
A.12-1 for a brief review of atomic-spectroscopic notation). In a given
term-symboi, 7' will be 8, P, D, F, or G etc. depending on whether the
total electronic orbital angular-momentum quantum number Z is 0, 1,
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2, 3, or 4 etc. Just as there are, for example, for a single electron with
an orbital angular-momentum quantum number of ! = 2, five degener-
ate d-orbitals, so there are five degenerate total electronic wavefunctions
for a many-electron atom or ion in a D (L = 2) state.t Furthermore,
it can be shown that the symmetry properties of the five total-electronic

TasLe 12-5.1
Splitting of electronic states by different symmetrical

environmentst
Free Splist statest
ion siates Oy Fa DPn Z, P,
3 4, A, A, 4, Ay
P T, T, Ay E, A, E Ag E
D B, Ty, E. T, 434 By, A E(2) A,, By,
s> 7- B’,E
F Aggs Tiys Ay Ty, Ty Ay By, Ay, Ay(2), By, 4y,
20 By, B,(2) E(2) B,, E(2)
G Au- El’ A,, E! Tl- A"(2), Aav Al(2)' A!v Ax(2)a Av
Tvys Ty, T, hd B,,, B,,, E(3) B,, B,
E,(2) E(2)
H £, T,2), ET(2),T, Arer A3(2), A4, 4,(2), 4,, 4,(2), By,
1 By, B, E(4) B,, E(3)
E,(3)
1 Ayg Ay, 4y, 4,5, E, A2y, Ay AL3), A3(2), A4(2), Ay,
E,. T,, T3, Ty(2) B,,(2), By,(2), E(4) B,(2), B,(2),
T,,(2) E,(3) E(3)

t The states are derived from d" configurations only and hence for @y and D,;, tho
split states all have g character.

1 The numbers in parentheses refer to the number of states of the given symmetry,
e.g. the 13 degenerate total wavefunctions for the state I form a reducible representa-
tion for 2, which can be decomposed as

T = 3T4: @ 2742 @ 42

wavefunctions belonging to a D state are the same as those of the five
d-orbitals. Necessarily then, a D state will split under an (@, perturbing
environment into two states. The new states will again be labelled by
the relevant irreducible representations, but this time upper case
letters will be used. In Table 12-5.1 the states into which the states of a
free ion are split under a variety of environments are listed.

Since a chemical environment does not normally interact directly
with electron spins, the spin multiplicity of a state is unaffected by the
splitting and the split states will have the same multiplicity as the
parent free ion state. The quantum number J also remains unaltered.
For this reason, multiplicities and J values are left out in Table 12-5.1.

1 Each wavefunction will correspond to a different value of the quantum number

M, (the equivalent to m, for a single electron) and will be a linear combination of Slater
determinants, composed of atomic orbitals, which have the same value of M.
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12-6. Order of orbital energy levels in crystal field theory

Our object in discussing crystal field theory is to construct energy
level diagrams (correlation dicgrams) which show how the energies of
the various electronic states into which the free-ion terms split depend
on the strength of the interaction of the ion with its environment.
Before we can do this, however, it iz necessary to have some idea about
the relative order of the energy levels of the d-orbitals in tetrahedral
and octahedral surroundings (our discussion of correlation diagrams
will be restricted to ions with a d* configuration and environments
with a &4 or @, symmetry). Such relative order concerns quantum
mechanics rather than symmetry or group theory and a rigorous
treatment is beyond the scope of this book. Nonetheless, if we are
willing to forego rigour, a simple model using crystal field principles
will establish all we need to know for the purposes of constructing
correlation diagrams.

For an octahedral or tetrahedral environment we have already seen
that five, originally degenerate, d-orbitals are split into two sets which
have different energies: one set is d s and d,s_,s (called ¢, or ¢ orbitals,
depending on the environment) and the other is d.,, d,,, and d,,
(called ¢,, or f, orbitals). To investigate the relative order of the two
new energy levels, it is only necessary to look at the effect of the
environment on one orbital of each set, say d,s_,» and d,,.

In crystal field theory each ligand is approximated as a point charge
or a point dipole and each metal-ligand interaction is taken to be
purely electrostatic. So our problem is reduced to one of investigating
the effect of point charges (or point dipoles) arranged tetrahedrally or
octahedrally about an electron in a d,s_,» or a d,, orbital.

Since the electron has a negative charge and since we will assume
the ligands to be anions or dipolar molecules with their negative ends
pointed towards the central ion, an octahedral arrangement of ligands
will clearly result in greater electrostatic repulsive forees for an electron
in & d.a_,a(e,) orbital than for an electron in a d,,(?,,) orbital (compare
the two diagrams in Fig. 12-6.1). The {,, orbitals should therefore be
more stable than the ¢, orbitals in an octahedral environment. The
exact magnitude of the difference in energies will depend, amongst
other things, on the nature of the ligands and it is commonly given the
symbol A, or 10Dg (see Fig. 12-6.2).

The difference between the effect of a tetrahedral arrangement of
ligands on an electron in a d,s_,. (e-type) orbital and on an electron
in a d,, (t,-type) orbital is perhaps not quite so obvious as the previocus
case. However, a study of Fig. 12-6.3 suggests that an electron in a

Transition-Metal Chemistry 261

Frc. 12-6.1. d,2_,2 and d,, orbitals surrounded by an octahedral arrangement of ligands.
The ligands which are directly above and below the origin of the axes are not shown.
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Fi16. 12-6.2, The relative energies of d-orbitals in octahedral &, and tetrahedral g4
environments.
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Fia. 12-6.3. d,2_,1 and d,, orbitals surrounded by & tetrahedral arrangement of ligands.
The black circles indicate ligands below the xy plane and the shaded circles indicate
ligands above it. See Fig. 11-5.2 for the relations between the axes and the ligandas,
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d,s_,» orbital will be more stable than one in a d,, orbital. The energy
difference is given the symbol A, or 10Dq (see Fig. 12-6.2),

12-7. Correlation diagrams

We are now in a position to construct diagrams which show how the
energies of the various states into which free ion states are split by
surrounding ligands depend on the strength of the interaction between
the ion and the ligands. To start with these diagrams are qualitative
but they become more quantitative when we introduce a particular
value for the separation, A, or A, of the two sets of d-orbitals as a
measure of the strength of the interaction (A, for a tetrahedral environ-
ment and A, for an octahedral environment). We will restrict our
discussion to ions having a d” electronic configuration and surroundings
having a 5, or 0, symmetry.

The firat thing we have to do is to establish the anchor points of the
correlation diagram, that is to say the relative positions of the spectro-
scopic states under the extreme conditions of an infinitely weak inter-
action and of an infinitely strong interaction. Consider an ion with a d2
electronic configuration, the states of the free ion are, in order of
increasing energy, SF, 1D, P, 1G, and 1S. This order and the precise
energies are found from atomic spectroscopic measurements.} How-
ever the order of the states can be partially established by the
application of Hund’s rule: (a) the state with maximal multiplicity
lies lowest, (b) if there are several states with maximal multiplicity
that with the largest value of L lies lowest. If we apply a weak
octahedral field to these states they will be split into new states in
accordance with the results which have been given in Table 12-5.1.
Since the perturbation to the ion is smali, the relative energies of the
new states may be calculated by the quantum-mechanical method
known as perturbation theory. It is found that the new states are
ordered, with respect to energy, as shown below. (The S and ?P
states are not split.) The actual magnitude of the gaps between the
states is & function of A .

So much for the left-hand (weak-field) side of the correlation diagram
for a d% ion in an octahedral environment. Now we must consider an
infinitely—strong interaction. Here the situation is directly contrary to

1 The standerd compilation of experimental atomic energy levels is C. E. Moore's
Atomic Energy Levels, N.B.8, Circular 467. The states which emanate from & given
electronice configuration are determined by the familiar vector model rule coupled with
the Pauli exclusion principle. The reader might note that the vestor model rule itself

can be derived from group theoretical principles. However, the derivation involves the
full rotation group which is beyond the scope of this book.
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the earlier one. We now assume that the interelectronic repulsions in
the ion are small compared with the infinitely-strong crystal field.
In other words we have a splitting of the free-ion states which is very
large compared to the separation between them. The wavefunctions
which are constructed for the free ion and are based on relatively strong
interelectronie repulsions (see the footnote on page 259) are quite
unsuitable for this new situation and instead infinitely-strong-field
configurations become the natural choice. An infinitely-strong-field
configuration is obtained by assigning each d-electron to either a f,,
or an ¢, orbital. For a d? ion in an octahedral environment, both the
electrons go into the ¢;, orbital to form the lowest lying configuration:
t2,. The next highest configuration will be t;,¢; and after that e;. The
energy separation between these configurations will be A, or 10Dg¢
(see Fig. 12-6.2).

Now let us consider what happens as we weaken this infinitely—-strong
interaction with the environment to just a strong interaction. The
interelectronic repulsions, in a relative sense, start to increase as the
electrons start to influence each other. As they begin to couple, a set
of states of the entire configuration will be produced i.e. there is a
splitting into the strong-field states. The new states and their energies
can be found by treating the interelectronic repulsions as perturbations
on the infinitely-strong-field configurations. The qualitative picture,
however, can be obtained by the use of group theory in the following
way. 1f the states which arise from a given configuration are known,
then the states which arise from the configuration with one additional
electron must have the symmetry labels of the irreducible representa-
tions which are contained in the direct product (see § 8-3) between the
symmetry labels (i.e. irreducible representations) of the initial states
and the added electron. With only one d-electron, there are no inter-
electronic repulsions, so the symmetry labels of the states of d! must

“be the same as those of the electron. Thus the ¢,, and e, electrons of d*
in @, give rise to *T'y, and *E, states, respectively.

For a d? configuration, to obtain the states of #, it is necessary to
take the direct product between T, (the symmetry label of the state
of #3,) and T, (the symmetry label of the added electron). Using the
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techniques established in § 8-3, we find
ITu @ [T = I'Tuw @ 7w @ B @ D41

so that the infinitely-strong-field configuration i3, gives rise to states
having symmetries T,,, T,,, E, and 4,,. Similarly, the first excited
configuration, f,¢;, leads to T';, and 7'y, states since

I'T% @ I'%e = I'T1e @ T
and the second excited configuration, e, leads to E,, 4,,, and A,,
states since I @ T¥r = I's @ [w @ M,

As well as the symmetry labels of these strong-field states, we also
require the multiplicities. The completely general method of deter-
mining thege is beyond the scope of this book, so we will confine
ourselves to consideration of a case which can be resolved on the basis
of some simple arguments. Consider first the configuration t;, and let
the three ¢,, orbitals be represented by three boxes. In Fig. 12-7.1 it is
shown that, if an electron with spin quantum number m, = } is
represented by an arrow pointing upwards and one with spin quantum
number m, = —} by an arrow pointing downwards, then the number
of ways of arranging the arrows in the boxes ia 15. This corresponds to
the number of distinct wavefunctions for ¢,. As the field strength is
decreased this total degeneracy must remain at 15. We now recall that
a T-type state is of three-fold degeneracy, an E-type state of two-fold
degeneracy, an A-type state is non-degenerate and also that only
triplet or singlet multiplicities can arise from two electrons. Therefore,
if the required multiplicities a, b, ¢, and d are attached to the states

in the followi :

in the following way aTw "Tl,, eE', "Au;

and if we require that the degeneracy for the strong-field case remain
at 15, then 3a+3b+2+d = 15,

with a, b, ¢, and d each equal to either 1 or 3. This equation has three
possible solutions:

a b [ d
1y 3 1 1 1
2 1 3 1 1
3 1 1 3 3.

That solution (2) is the correct one, we will discover only when we
finally set up the correlation diagram.
For the configuration f;,¢; it is possible to write 24 wavefunctions

(for each of the six ways of putting an electron in the £,, set, there are
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Fig. 12-7.1. Symbolic wavefunctions for the 5, configuration.

four ways of putting one in the ¢, set). Hence, if a and b are the multi-
plicities of the states T, and T',, respectively, we have

3a4+3b = 24

which is satisfied, for example, by ¢ = 4 and b = 4. But since we have
already stated that the multiplicities are restricted to 1 and 3, this
result is unacceptable. We can extract ourselves from this dilemma by
assuming that we have in fact four states 37T,,, 3T,,, *T,,, and 1T,,.
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[Choosing eight singlet states is ruled out on the grounds that we would
then have more states in the strong field than in the weak field (this
will become apparent when the final diagram is set up).]

For the ] configuration it is possible to construct six wavefunctions
and if @, b, and ¢ are the multiplicities of £, 4,,, and 4,, respectively,

then 2a+btc —6

for which there are two solutions:

a b c
(1) 1 1 3
2 1 3 1

Again the correlation diagram itself will dictate that solution (1) is
the correct one.

The order of the states derived from a given infinitely—strong-field
configuration is given by a modified Hund’s rule: (1) states with the
highest multiplicity lie lowest, (2) for states with equal multiplicity,
the ones with highest orbital degeneracy (T > E > A) tend to lie
lower. Any ambiguities which remain after the application of this rule,
can only be resolved by recourse to detailed quantum mechanical
calculations.

Once the two sides of a correlation diagram have been established,
the states of the same symmetry and multiplicity are connected by
straight lines in such a way as to observe the non-crossing rule : identical
states cannot cross as the strength of the interaction is changed. When
this is done we have completed the correlation diagram.

The assignment of multiplicities can now be settled. For a d? ion in
an octahedral environment there are no 34, states in the weak crystal
field and thus solution (3) for the ¢}, configuration is ruled out since it
includes such a state. Also the highest of the *T,, states in the
weak crystal-field must connect with the highest 37, state in the
strong field, namely the one arising from the #},¢, configuration, this
leaves the other weak crystal field *7',, state with only the possibility
of connecting with the T, state from {#;,, thus this state must be a
triplet and solution (2) is the correct one. Finally, the fact that the
only 4,, state in the weak crystal field is a triplet requires that we
accept solution (1) for the ¢] configuration.

A correlation diagram for a d? ion (e.g. V3+) in an octahedral environ-
ment is shown in Fig. 12-7.2. What this diagram does is to demonstrate
how the energy levels of the free ion behave aa a function of the strength
(A,) of the ion’s interaction with a set of octahedrally disposed ligands.
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Fia. 12-7.2. Correlation diagram (not to scale) for a d* ion in an octahedral environ-
ment. Adapted from B. N. Figgis Introduction to ligand fields.

If A, is known for a particular jon and set of ligands, then a correlation
diagram will immediately predict the order of the ion’s energy levels.

For a d? ion in a tetrahedral environment, exactly the same procedure
can be carried out. The free ion states will be the same as in the octa-
hedral case. The type of states produced from a particular free-ion
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state by the weak crystal-field will be the same as before except for the
dropping of the subscript g (see Table 11-2.2). The order of the states
from & particular parent state, however, will be reversed (we come
back to this point in a moment). The infinitely-strong-field configu-
rations will be reversed in accordance with Fig. 12-6.2. The strong
field states derived from a particular infinitely-strong field configuration
will be in the same order as before. The complete diagram is given in
Fig. 12-7.3.

One immediate deduction which can be made from these two corre-
lation diagrams is that the ground state in both cases remains a triplet
no matter what the strength of the interaction (37, in one case and
34, in the other). We therefore expect, for example, tetrahedral and
octahedral complexes of V3+, in the crystal field approximation, to have
two unpaired electrons. Indeed, this is known to be the case for the
octahedral complexes e.g. (NH,)V(S0,):.12H,0.

A useful relationship for constructing correlation diagrams for other
d®-type ions is the hole formalism, according to which the d!-" elec-
tronic configuration will behave in exactly the same way as the d
configuration except that the energies of interaction with the environ-
ment will have the opposite sign. Essentially, we treat the n holes in
the d shell as n ‘positrons’. The change of sign of the interaction will
have the effect of reversing the order of the infinitely-strong-field
configurations (the stability of the e, and ;, levels is reversed). However,
since the ‘interpositronic’ repulsions are the same as the interelectronic
repulsions, the perturbations these cause when relaxing the infinitely-
strong-field are the same and the order of the states in the strong field
for a particular parent configuration is the same for both d” and di°-—»
ions. The free-ion states will be the same in both cases but the weak-
field environmental perturbations will be of opposite sign, so that for
any given parent state the order of the weak-field states is reversed.
These relationships are summarized in Table 12-7.1

Al that has just been stated for changing a d* correlation diagram
to a d'*-" one with the same environment, applies equally well to
changing a d" diagram for an octahedral environment to one for a
tetrahedral environment. We have already seen that infinitely-strong-
field configurations are reversed by such an environmental change
{Fig. 12-6.2) and, if we assume therefore that the environmental
perturbation in going from the free-ion to the weak-field case is also
reversed, then we can conclude that the order of states emanating

t A precise and formal discussion of the hole formalism is given by J. S. Griffith:
The theory of transition-metals iona, Cambridge University Press, 1961.
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Free- Weak- Intermediate Strong- Strong-field

on crystal crystal field field configurations
terms field terms
18 14,
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F1g, 12-7,3. Correlation diagram (not to scale) for a d? ion in a tetrahedral environment.
Adapted from B. N. Figgis Introduction to ligand fields.

from a particular parent free-ion state will, in the weak field, be the
opposite in a J; environment to that in an @, environment. The free
ion states and the interelectronic-repulsion perturbation are the same
in both cases. Hence, Table 12-7.1 applies also to the @, <>, change.

It should now be clear that if we change both the configuration,
d"+— d¥*—" (ie. change the ion), and the environmental symmetry,
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F 44> Oy, then the correlation diagrem is unaltered (except for the
obvious and minor change of adding or dropping the subscript g on
various symbols). We can expresa this result by

dn{oct) = dio—=(tetr)

d=(tetr) = di*-=(oct).
These relationships show that far fewer individual correlation diagrams
need be constructed from scratch than might have first been anticipated.

and

12-8. Spectral properties

One of the most important applications of correlation diagrams
concerns the interpretation of the spectral properties of transition-
metal complexes. The visible and near ultra-violet spectra of transition-
metal complexes can generally be assigned to transitions from the
ground state to the excited states of the metal ion (mainly d-d tran-
sitions). There are two selection rules for these transitions: the spin
selection rule and the Laporte rule.

The spin selection rule states that no transition can oceur between
states of different multiplicity i.e. AS = 0. Transitions which violate
this rule are generally so weak that they can usually be ignored.

The Laporte rule states that transitions between states of the same
parity, % or g, are forbiddeni.e. 4 —+ ¢ and g — u but g +» g and % 4 u.
This rule follows from the symmetry of the environment and the
invoking of the Born—Oppenheimer approximation. But since, due to
vibrations, the environment will not always be strictly symmetrical,
these forbidden transitions will in fact occur, though rather weakly
(oscillator strengths of the order of 10-4). All the states of a transition-
metal ion in an octahedral environment are g states, so that it will be
these weak symmetry forbidden transitions (called d-d transitions)
that will be of most interest to us when we study the spectra of octa-
hedral complexes.

We will exclude from our discussion the so-called charge-transfer
bands. These relate to the transfer of electrons from the surrounding
ligands to the metal ion or vice versa. They may be fully allowed and
hence have greater intensities than the d-d transitions. They usually,
though not always, occur at high enough energies and with such high

intensities that they are not too easily confused with the d-d bands.
A third type of transition, transitions occurring within the ligands,
will also be ignored.

By consulting the appropriate correlation diagram, it is possible to
see what kind of d-d spectrum a transition—-metal ion in a given environ-
ment should have. For qualitative predictions we can use diagrams of



272 Transition-Metal Chemistry

the kind which were developed in the last section. However, for
quantitative predictions it is necessary to use the so-called Tanabe—
Sugano correlation diagrams (J. phys. soc. Japan 9, 753 (1954)).

These diagrams are based on proper quantum-mechanical calculations
of the energy levels of a d" system in the presence of botk interelectronic
repulsions and crystal fields of medium strength. Such calculations are
very difficult to carry out and we will simply discuss the form of the
results. It turns out that the energy of each state depends not only on
the field strength (as measured by A, or A,) but also on two electronic-
repulsion parameters B and C called Racah parameters. (B and C are
related to the Slater—Condon parameters ¥, and F, by the equations:
B = F,—5F, C = 35F,.) In Tanabe-Sugano diagrams it is assumed
that C is directly proportional to B with a proportionality constant
which has a fixed value for each diagram (the diagrams are apparently
not too sensitive to the value of this proportionality constant).
Furthermore, the diagrams are made indepenrdent of B by plotting E/B
against A /B (or A /B) rather than E, the energy, against A, (or A,).
Consequently, to obtain from a given diagram the relative energies
of the states of a metal ion-ligand system, it is necessary to specify
both B and A, (or A,). This is usually done by using two pieces of
experimental data, e.g. by fitting two d—d transitions to the appropriate
Tanabe—Sugano diagram.

Now let us consider some particular cases. [V(H,0)4]** is a d® ion
in an octahedral environment and the pertinent qualitative correlation
diagram, Fig. 12-7.2, shows that there should be three spin-allowed
transitions: from the 37',,(F) ground state to the excited states 37, (F),
3T, (P) and 34,,(F); the symbol in brackets, in each case, denotes the
parent state of the free ion. Experimentally, aqueous solutions of
trivalent vanadium salts show two absorption bands, one at 17 200 em~!
and the other at 25 600 cm~!; these give rise to the green colour of such
solutions. If we specify the complex (ie. determine A, and B) by
fitting the transitions 37,,(F) <« 3T (F) and 3T, (P) + 3T, (F) to
17 200 and 25 600 cm™! respectively, then A, is found to be 18 600 cm~!
and B to be 665 cm—1. With these values the transition 24,,(F) «— T, (F)
is predicted to lie in the region of 36 000 cm~'. Unfortunately this
cannot be verified as there is a very strong charge-transfer band in the
same region. However, in the solid state, particularly for V3+ in Al,Q,,
where charge transfer occurs at a higher energy, a weak band at about
the right position has been found. Since the oxygen ligand atoms in the
Al,O, structure are known to produce about the same value of A, as
water molecules, this can be considered as partial experimental con-
firmation of the assignments for [V(H;0),]**. An aqueous solution of a
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V2+ galt also shows some very weak bands (f ~ 10~7) in the 20 000—
30 000 cm~! region; these are thought to be due to spin-forbidden
transitions to excited singlet states.

A very well studied group of complexes are those with d? configu-
rations in an octahedral environment. We have not shown the corre-
lation diagram for this case, but the important features of such a
diagram are a ‘4,,(F) ground state and three other excited quartet
states which, in order of increasing energy, are ¢7,,(F), ¢7,(F), and
4T, ,(P); furthermore, none of these states cross each other as the
strength of the interaction changes. As an example, we take the case
of [Cr(H,0),]*+. The aqueous solutions of salts of trivalent chromium
are green in colour as a result of absorption bands at 17 000, 24 000,
and 37 000 cm~* (there are also two very weak spin forbidden bands at
15 000 and 22 000 cm—?). If the complex is specified by fitting the
transitions 47,(F) < 94,,(F) and T, (F) «— *4,,(F) to 17000 and
24 000 cm~* respectively, then A  has to be 17 000 cm-! and B has to
be 698 em-1, The transition 4T, ,(P) « 44, {F) is then predicted to lie
at 37 000 em~! which is in excellent agreement with the observed
spectrum.

The same correlation diagram can be used for the tetrahedral com-
plexes of Co*+ (d%) and, as an example, we consider [CoCl,]*~. The
spectrum of [CoCl]*~ in HCl solutions shows bands at 5800 and
15 000 cm—! and some weak absorption in the 17 000-23 000 cm—!
region. If the *T,(F) <« *4,(F) transitiont is assigned to the 5800 cm—1
band, then it is found to be impossible to fit the remaining bands.
However, the assignment:

ST (F) «— $A4,(F) 5800 cm™?

AT (P) « YA, (F) 15 000 cm—!
can be fitted to the correlation diagram and this leads to a value of
3200 em™! for A, and 730 cm~! for B. With these values, the transition
1T (F) «— *d4,4(F) is predicted to lie at 3300 cm—!. Studies in the infra-
red region show a band at 3500 em—* which can probably be assigned
to this transition. There are no other spin-allowed transitions, so the

bands in the 17 000-23 000 cm—! region must be assigned to spin-
forbidden transitions.

12-9. Magnetic properties

The effective magnetic moment of a transition metal ion Byee 18
defined by the equation

Herr = 2:84(x T} Bohr magnetons

1 Note that the g subscript is not applicable in the tetrahedral oase.
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where g is the molar magnetic susceptibility and 7' the temperature.
Different formulae can be derived which relate u,, to the ion’s angular
momentum quantum numbers L, S, and J (definitions of L, S, and J
are given in Appendix A.12-1). The particular formula to be used
depends on how far the excited states of the ion lie above the ground
state in comparison with £7'.

If the excited states are separated from the ground state by an
amount much larger than kT, then

Bex = g (T + 1)}
where g, the Land$é splitting factor, is given by
g = 14+ {S(S+1) — KL+ 1) +I(J +1)}/2T (T +1).

Hence, for a system in which the jon has no orbital angular momentum:
L=0,J=28,¢g=2and
for = 2{S(S+1)}.
Also, under these circumstances, if n is the number of electrons in the
jon with unpaired spin, then 8§ = n/2 and
fer = {n(n+2)}4.

This is known as the spin-only formula. Many ions which in the free
gtate have orbital angular momentum (L 7 0}, lose it, completely or
partially, when incorporated into a complex. This phenomenon is
called orbital angular momentum gquenching. It can be shown that for
A states the quenching is complete and that for 7 and E states it is
incomplete.t Because of this, the spin-only formula applies to more
situations than might have been expected.

The number of unpaired spins # for an ion in its ground state is
obviously determined by the multiplicity, 28+1, of that state and
vice versa. The multiplicity is written in the upper left hand corner of
the symbol for the state. Thus the ground state symbol can be read off
from the appropriate correlation diagram and, if apin-only conditions
apply, the effective magnetic moment can be immediately determined.

For octahedral dt, d2, d?, d8, and d® cases, the ground state is derived
from the lowest term of the free ion for zll values of the crystal field
strength (defined by A,). Hence the multiplicity, the number of
unpaired spins and, if the spin-only formula applies, the effective
magnetic moment must all be the same as that of the free ion, no
matter how strong the interaction between the ion and the ligands.
For octahedral di, d%, d¢, and d7 cases the ground state is derived from

tSee P.J. Stiles, Mol. Phys., I5, 405 (1968).
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TaBLE 12-0.1
Magnetic properiies of some transition-metal sons

Ne.of d Ground expt
electrons Ion Comporund state n {n(n 4+ )} MS(OO pK)
1 2+ CsTi{80,),.12H,0 L 1 1-73 1-
2 v+ (NH,)V(80,),.12H,0 'T,: 2 2.88 2::
3 Cr*+ KCr(80,),.12H,0 i4,, 3 3-87 384
Mo+ K,MoCl, 44,, a 3-87 3-79
Mp*+ BaMnF, s4,, 3 3-87 8-80
Ret+ Ca,ReCl, ‘4, 3 3-87 3-35
4 Crt+ Cr(80,).6H,0 sE, 4 4-90 4-82
Mn?+ Mn(acac), 5K, 4 4-90 4-86
. EMn(CN), T, 2 2-83 3-50
Ru.: X;RuCl, T, 2 2-83 2:96
Os " K,0asCl1, 3T 2 2-83 1-60
5 Mn H,Mn(80,),.6H,0 *A,, 5 5.92 592
K ,Mn(CN}),.8H,0 T, 1 1-73 2-18
Fet+ KFe{80,),.12H,0 ‘4, 5 5-92 5:89
K, Fe{CN), i 1 1-713 2-25
Ru*+ Ru(NH,),.Cl, 1Ty, 1 1-73 213
Os?*+ 0s8(NH,),.Cl, L 48 1 1-73 1-81
8 Feot+ K, Fe(CN), 14, ] 0-0 0-35
(NH,),Fo(80,),.6H,O L/ 49 4 4-90 5-47
Co¥+ Co(NH,),.Cly 14,, o] 0-0 0:46
Rh3+ Rh(NH,},.Cl, 14,, 0 0-0 0-36
Ird+ K,IrCl,.3H,0 14, [ 0-0 0-0
P+ K,PtCl, 14,, 0 0-0 0-0
1 Cot+ K,BaCo(NO,;), *E, 1 1-73 1-81
) (NH,);Co(80,),.6H,0 ‘T 3 3-87 5-10
8 Niz+ (NH,),Ni(80,),.6H,0 *4,, 2 2.83 3:23
[(CoH ) N1, NiCl, i 2 2.83 3-89
9 Cut+ K,Cu(80,),.6H,0 LB, 1 1-73 1-91

the lowest free-ion state only out to a certain critical A, value, beyond
which a state of lower multiplicity, originating in a higher free-ion
state, drops below it and hence becomes the ground state.t So in these
cases the multiplicity, the number of unpaired spins and the effective
magnetic moment will depend on A, and therefore on the nature of the
ligands. For strong interactions between the ion and its environment
(A, large) there will be fewer unpaired spins than for weak interactions
(Ao.sma.ll). Similar predictions can be made for ions in tetrahedral
environments.

In Table 12-9.1 calculated (spin-only formula) and experimental
effective magnetic moments are listed for a number of ions, they are in
accord with the previous discussion.

1 8tudies of the oross-over point have been made by E. Kinig; fi 1
Theor. Chim. Acta 26, 811 (1972). i g3 see, Tor exempre.
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12-10 Ligand field theory

In the introduction to this chapter we stated that the approximations
made in applying crystal field theory to most transition-metal complexes
and compounds are extreme. The question which arises is: can we
modify the theory so as to take account of its known defects? The
answer is a qualified ‘yes’. Essentially, what we must do is to drop the
assumption that the metal ion’s partially-filled shell consists solely of
its d- or f-orbitals and allow for the overlap between the orbitals of the
ion and those of the ligands (MO calculations show that there invariably
is such an overlap). Doing this has two consequences. We can no
longer consider the crystal field parameters A, or A, (and, if Tanabe—
Sugano diagrams are used, B) within the framework of simple electro-
statics and they lose their initial significance and become quite arbitrary
parameters to be adjusted in any way necessary.} In other words, the
corrections due to the approximations are assimilated in these param-
eters. Further, in the construction of the correlation diagrams, the
separations of the energies of the free-ion states become adjustable and
are not taken as the observed values given by atomic spectroscopy.

With the exception of these changes, the practical development of
ligand field theory and crystal field theory are the same.

Appendix
A.12-1. Spectroscopic states and term symbols for many-slsctron
atoms or ions

So far in this book we have only discussed non-relativistic Hamiltonian
operators but when atomic or molecular spectra are considered it is necessary
to account for relativistic effects. These lead to additional terms in the
Hamiltonian operator which can be related to the following phenomena:

(1) The coupling of spin and orbital angular momenta among the electrons.

(2) The coupling of spin angular momenta among the electrons.

(3) Interactions among the orbital magnetic moments of the electrons.

(4) The coupling of spin angular momenta among the nuclei.

(5) The coupling of spin angular momenta of the electrons with spin

angular momenta of the nuclei. .

{6) The coupling of nuclear-spin angular momenta with electron-orbital

angular momenta.

(7) Nuclear electric-quadrupole-moment interactions.

As well as these additional terms there will also be changes to the Hamil-
tonian operator due to the relativistic change of electron mass with velocity.
In ordinary optical spectroscopy the first two phenomena, (1) and (2), are
the most important, leading to changes to the non-relativistic energy levels
which are observable (effects (4) and (5) are important in n.m.r. and e.s.t.
spectroscopy)-

+ For example, the parameters can be adjusted so as to reproduce the experimental
d-d spectral transitions. This, in faot, was what was done in §12-8,

Transition-Metal Chemistry 2717

For these reasons the electronic energies, and therefore the electronic
states, of a many-electron atom or ion will depend upon the electronic spins
and how the spin angular momenta are coupled with the orbital angular
momenta. The coupling scheme which is most appropriate for our purposes
is known as L—S§ (or Russell-Saunders) coupling. It first couples the electronic
8pin angular momenta together, then the electronic orbital angular momenta
together and finally couples these total momenta together. Like all coupling
schemes, it is an approximation. Associated with the spin and orbital
angular momenta of & single electron are quantum numbers ! and s, respec-
tively, and for a n-electron system there are equivalent quantum numbers
L and 8. The quantum number L defines the total orbital angular momentum
and its allowed values are

L=04+4+L+ . L, 44+ . L —1,..., —(L+h+ ... L)
where [, is the arbital quantum number of the ith electron. Capital letter
symbols are assigned to states having different L values as follows:

L=01 2 3 4 5 8
symbol=8 P D F G H 1.

The quantum number § defines the total electronic spin angular momentum
and its allowed values are

8 =nf2, (nf2)—1,...,1/2 (if n is odd)
8 =nf2, (n/2)—1,...,0 (if = is even).

.In L-8 coupling, the total electronic angular momentum (spin and orbital)
is defined by the quantum number J whose allowed values are

L4+8, L+8—1,..., |L-8|.

TasrLe A.12-1.1

Spectroscopic terms arising from equivalent
electronic configurations in L-S coupling

configuration L-8 termst
g® 15
p or p* tp
p® or pt 18, 1D, P
p* 1P, D, ¢S
d or @* D
d® or 4¢ 15, 'D, 1G, *P, *F
d?® or d7 tD(2), P, 'F, 3G, 3H, 1P, *F
d¢ or d¢ 18(2), 1D(2), IF, 1G(2), 1L, 2P (2),
D, *F(2), 3G, *H, 5D
d* 8, 'P, *D(3), IF(2), 2G(2), *H,

tL ‘P, D, *F, ‘G, '8

1 The number in parenthesea is the number of
distinet terms with the same L and S quantum
numbers. For cach distinet term there will be differ-
ent states corresponding to the different possible J
valuea.
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18 s,
1s® 282 2p* 3s® 3p* 1D D,
sp _ P
—_— {__ :P:
—sp,
configuration L S terms levels

Fr1e. A.12-1.1, Levels for the silicon atom.

J therefore can have 2841 values if . > § and 2L-41 values if L < 8.
The number 28+1 is called the multiplicity.

As the electronic energy of an atom or ion will depend on the quantum
numbers L, 8, and J, we designate the various energy states which may
arise from a given electronic configuration by what is known as a spectro-
scopic term symbol: g,

where T'=S,P,D,... as L=20,1,2,.... When all the electrons have
different principal quantum numbers there are no restrictions on the combi-
nations of I and 8, but, if this is not so, some combinations will be excluded
by virtue of the Pauli Principle. In Table A.12-1.1 the spectroscopic states
of common configurations of electrons with the same principal quantum
number are shown. The reader should note that we are only concerned with
that part of an electronic eonfiguration which is outside of any closed shells
(noble-gas structures). The latter are spherically symmetrical and do not
play any role in the effects which are of interest to us in this chapter. In
Fig. A.]12-1.1, as an example of the above notation, the hierarchy of levels
for the ground state configuration of silicon is shown.

PROBLEMS
12.1. Determine the qualitative form of the molecular orbitals for the square-

planar complex Ni{CN),?~. (Assume that each CN ligand provides one
o-type and two w-type orbitals tc the system.)

12.2. Determine the quslitative form of the molecular orbitals for the tetra-
hedral molecule MnOj;. [ Assume that each oxygen atom providea just three
p-orbitals (set these up so that one points towards the Mn and the other
two are perpendicular to each other and to the Mn—O axis) and that the
Mn atom provides 48 and 3d orbitals.] You will be on the right track if

you find that I = T4 @ ITh
" =T ¢ TT: @ I'Ts,
12.3. Determine the qualitative form of the molecular orbitals for the eclipsed
conformation of ferrocene.
12.4. For an octahedral environment the d-orbitals are split into two sets
(ds, and d¢, }; how would they be split for a square-planar environment?

12.5. Bet up a qualitative correlation diagram for the d3 configuration in an
octahedral environment.

Appendix I: Character Tables

The =z, y, z axes referred to in these tables are a set of three mutually per-
pendicular axes chosen as follows:

(1) €,: the z axis is perpendicular to the reflection plane,

(2) Groups with one main axis of symmetry: the z axis points along the
main axis of symmetry and, where applicable, the » axis lies in one
of the o, planes or coincides with one of the €, axes. For %, and &,
the x, ¥, z axes coincide with the three equivalent two-fold axes.

{3) J 4 and &, see Figs. 3-6.2 and 3-6.3 respectively.
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I: Groups€,,€;, and €, (n = 2, 8, 4, 5, 6) I11: Groups Zn{n = 2,3,4, 5, 6)
€ E o, Dy =9 E Cyz) Ciy) Cylz)
4 1 1 zy; R, x%; y2; 2% zy A 1 1 1 1 2?; y2; 22
A" 1 -1 2; R; R, zz; Yz B, 1 1 —1 —1 =z R, zy
B, 1 —1 1 -1 y; R, zz
¢ E i B, 1 -1 —1 1 xR, yz
4, 1 1 R, R R, =%y?z%xy;az; 42 Z, E 2C; 3C;
4, 1 -1 xy;2
A, 1 1 1 2y 2R
¢ E C, 4, 1 1 -1 # R,
E 2 -1 0 (x,y); (R, R,) (2*—3y% xy); (22, y2)
4 1 1 z; R, x2; y%; 22 oy
B 1 -1 =zy;BR;R, xz; Y2 2, E 2Cg C, 2C; 2C;
¢ E C, (i & = exp(2mi/3) A4, 1 1 1 1 1 2 y?; 22
A, 1 1 1 —-1 —1 z; R,
A 1 1 1 2z, R, zry2; 22 B, 1 -1 1 1 —1 z2—yt
1 & & B, 1 -1 1 —1 1 zy
E {1 ot e} (= 9): (B B)  (=*—y% 29); (22, y2) E 2 0 -2 0 0 (zy:(R.,R) (rzy2)
¢ E ¢, ¢, cC? 2, E 2C, 3¢t  5C, @ = 72°
A 1 1 1 1 z; R, 22 4-y?; 2t A, 1 1 1 1 24yt 22
B 1 -1 1 —1 232, xy A, 1 1 1 —1 2, R,
1 i -1 —i E, 2 2cosx 2cos2a 0 (z,¥); (R, R) {xz, yz)
E 1 —i —1 iJ {(z, ¥); (R,, R} (22, y2) E, 2 2cos2a Z2cosa 0 (z*—y?, xy)
¥ E C ¢ ¢ ct £ = exp(2if5) Ze E 2C, 26, G, 3G 3Gy
A 1 1 1 1 1 . 2y 2. o8 4, 1 1 i 1 1 1 zr+y?; 2®
1 & P I = R, Ty A4, 1 1 1 1 -1 -1 2 R,
B {l &* 2% g2 e } (=, ¥); (R, k) (xz, yz) B 1 -1 r—1 I -1
E {l e e g e“] 32 ; —i } _"l’ _(]) (17 (=, ¥); (R, E,) ( )
2 xﬂ__ l’ 1 - ™ x, y 3 a0 v xz, yz
1 2% ¢ e* g ( Yy’ zy) E, 2 -1 -1 2 0 0 (x*—y?, zy)
¥ E C, c;, ¢ G? C: £ = exp(27i/6)
A 1 1 1 1 } 1 z; R 224-y2; 22
B 1 -1 1 -1 1 * v
E 1 e —g* —1 —¢ 2*
Tl e 1 e, } (., 9); (B, R,) (22, y2)
E L —e* —e 1 —e* —¢
Tl —e g 1 —¢ -—a"} (@*—y*, zy)



282

Appendix 1: Charactar Tables

IIl: Groups €pe (n = 2,38,4, 5, 6)

€ E C, a,(2) o.(y2)

A, 1 1 1 1 z x?; 2, 2®

4, 1 1 —1 —1 R, zy

B, 1 -1 1 —1 R, xz

B, 1 -1 -1 1 y. R, yz

€. E 2C, 3o,

A4, 1 1 1 z x2 4y, 22

4 1 1 -1 R,

E 2 —1 0 (2:, y): (Rm Ry) (17’“!{': xy); (12) yZ)

?4‘. E 2C; Cg 20’v 20‘d

A, 1 1 1 1 1 z 24y, 22

A4, 1 1 1 -1 —1 R,

B, 1 —1 1 1 —1 2—y?

B, 1 —1 1 —1 1 zy

E 2 ¢ -2 0 0 (xy);(R,R,) (2z,¥2)

€ E 2C, 2¢C? 5a, o = 72°
4, 1 1 1 1 z x24-y?t; 22
A, 1 1 1 —1 R,

E, 2 2co8a 2cos2a 0 (r,y); (R, R) (xz, yz)
E, 2 2co82x 2cosa 0 (z®—y2%, xy)
Cew E 2Cy 2C, C, 3a, 309,

4, 1 1 1 1 1 1 z a3} y3; 23
A4, 1 1 1 1 -1 —1 R,

B8 1 -1 1 —1 1 —1

B, 1 —1 1 —1 —1 1

B, 2 1 -1 -2 0 0 (x,9);(R,R,) (w2, yz)
E, 2 -1 -1 2 0 0 (= —y?, zy)

IV: Groups €,.n (n = 2, 3, 4, 5, 6)
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?zh Cg 1 oy
4, 1 1 1 1 R, 2% y3; 2% vy
B, 1 -1 1 —-1 R, R, xz; Yz
4, 1 1 -1 -1 z
. 1 =1 =1 1 =z ¥
€n E Cy C; o, S5 53 & = exp(2nif3)
4 1 1 1 1 1 1 R, zt+y?; 22
, 1 ¢ e* 1 € e*
5 {1 o e 1 * & } {z. ) (x*—y?, zy)
4 1 1 1 —1 -1 —1 z
" 1l & & —1 —g —g*
& {1 & e —1 —e* —g } (Bs K,) (22, y2)
“x E C, €, C} i 8 oy S,
A, 1 1 1 1 1 1 1 1 R, x4yt 2%
B’ 1 -1 1 -1 1 —1 1 —1 ra—yz;ry
1 i =1 —i 1 i —1 —i
E, {1 —i =1 i 1 —i —1 i} (R, B,) (22, xy)
4, 1 1 1 I -1 -1 —1 -—1 z
B, 1 -1 1 -1 -1 1 -1 1
1 i -1 -1 —1 — 1 i
E, {1 - -1 i —1 i 1 —i} (=, y)
¢x E C, € C € oo S, Si S S & = oxp(2mif5)
4 1 1 1 1 & 1 1 1 1 R, -
4 1 = &' g g* 1 € 5 £ &* )
E, '1 e glv g0 g 1 & MH pey e } (=, )
. 2 L] 38 e 19
PO A A A I S Y syt
AT 1 1 1 1 i -1 —1 —1 —1 —1 z
- 1 {1 - _— —_ ] | —
E‘ “ o o i- p _i _:o _::. _:. _g } (Ry Ry} (ze, y2)
Ey [l €1 et £ £ —1 —pg' g* —¢g *a"]
1 1 g** & £ P —1 —g% g P I—
€n EC, C, C, Ci Ci 1 8 5 o S, S, & = exp(2mi/6)
4, 1 1 1 1 1 t 1 & 1 1 1 1 R, a‘tyha?
B, 1 -1 1 -1 1 -1 1 —1% 1 -1 1 -1
1 & —e* —1 —e¢ e 1 £ —e* —1 —¢ &*
By 1 ¢e* —g —1 —g* ¢ 1 e* —g —1 —g* ¢ } Ry By) (2, yz)
1 —g* —& 1 —¢* —s2 1 —&* —¢ 1 —e* —e _
s 1 —: —e* 1 —eg —&* 1 —& —&* 1 —¢ —e‘] =y, 2y)
A, 1 1 1 1 1 1 —1 —-1 —1! —¥ —1 -1 z
B, 1 —1 I —1 1 —1 —1 1 —1 1 —1 1
1 —e* —1 — £* —1 —¢ [ 1L & —s*
I st A e e A e 4 NS
g |l —&* - b —g* —g —1 g* & —1 g* e}
o0l —g —g* 1 —g —e* —1 & £ —1 8 &*
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V: Groups 2, (n» = 2, 3,4, 5, 6)

D =%1n E GCyz) Cyly) Calx) i o(zy) a(xz) o(yz)
4, 1 1 1 1 1 1 1 1 x%; y3; 23
B, 1 1 —1 —1 1 1 -1 —1 R, xy
B,, 1 -1 1 —1 1 -1 1 —1 R, xz
B,, 1 -1 -1 1 1 -1 -1 1 R, yz
4, 1 1 1 1 -1 -1 —1 -1
B, 1 1 —1 -1 -1 -1 1 1 =z
B,, 1 —1 1 -1 -1 1 —1 1 y
Su 1 —1 -1 1 -1 1 1 —1 =

Dy, E 2C; 3C; o, 25, 3a,

47 1 1 1 1 1 1 2 4y%; 28

Ay 1 1 -1 1 1 —1 R,

¥ 2 -1 0 2 -1 0 (=y) (-2t zy)

A7 1 1 1 -1 —1 -1

A7 1 1 -1 -1 -—1 1 2

B 2 - 0 =2 1 0 (R, R) (zz, yz)

Pn E 2C, C, 2Cy 2C; 1 285, on 20y 20a

A, 1 1 1 1 1 1 1 1 1 1 a¥+y3; 2t

Age 1 1 I —1 -1 1 1 1 -1 —1 R,

B, 1 -1 1 1 —1 1 —1 1 1 —1 z%—y?

By £ -1 1 —1 1t 1 —1 1 —1 1 ay

E, 2 0 —2 0 0 2 0 —2 0 0 (R,R,) (xzy2)

41l 1 1 1 1 —1 —t —1 —1 —1

Ay, 1 1 1 —1 —1 —1 —t —1 1 1 z

B,1 —1 1 1 —1 —t 1 —1 —1 1

By 1 —1 1 -1 1 —1 1 —~1 1 -1

E, 2 0 —13 [} 0o —2 0 2 0 0 (z, ¥)

@0 E 2C, 2C;  5C, o 28, 285¢ 5oy o= 72°

4 1 1 1 11 1 1 1 Y y?; £

4y 1 1 1 -1 1 1 -1 R,

E‘. 2 2c08x 200822 1] 2 2cosa 2 cos 2a 0 (x.y)

E'._ 2 2cos2x 2o08u 0 2 2 cos 2a 2008 (1] (x?—yt, 2y}

Al. 1 1 1 1 -1 -1 —1 —1

45 1 1 1 -1 —1 —1 —1 1 "

E;_ 2 2cosa 2ocos22a 0 —2 —2c0sa —2 cos 20 9 (R, R} (xz,y2)

Ey 2 2co82x 2co8c 0 —2 —2co820 —Z2co8x 0

90 E 2C, 2G, C, 3C; 3C; { 2S, 2§, on 304 30v

A5, 1 1 1 1 1 1 1 1 1 1 1 1 24yt 2

4,1 1 1 1 —1 -1 1 1 1 1 —1 —1 R,

B, 1 —1 1 -1 1 —1 1 —1 1 -1 1 —1

B, 1 —1 1 —1 —1 1 1 —1 1 —1 —1 1

E,2 1 -1 -2 0 0 2 1 —1 —~2 0 0 (R,R) (zz,47)

Ky, 2 —1 —1 2 o0 0 2 —1 —1 2 0 o0 (=8 —yt, 2y}

4,1 1 1 1 1 1 —1 —1 —1 —1 —1 —1

A, 1 1 1 1 —1 —1 —1 —1 —1 —1 1 1 z

B,,! —t 1 -1 1 —1 —1 1 —1 1 —1 1

By, 1 —1 1 -1 —1 1 —1 1 -1 1 1 =1

B, 2 1 —-1 —2 0 0 —g —I 1 2 0 0 (zy)

By 2 —1 —1 2 1] 0 —2 1 T -2 0 (1]
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VI: Groups 2, (n = 2,3,4,5, 6}

gld = Vd E 2S‘ C, 2C; 2°d
A, 1 1 1 1 1 xt -yt 2
A, 1 1 1 —1 —1 R,
B, I -1 1 1 —1 zi—y
B, i -1 1 -1 1 z zy
E 2 0 —2 0 0 (#ny):(R.R) (zz4)
Dy, E 2C, 3C, i 28, 30,
Ay, 1 1 1 1 1 1 x4y 2t
Ay, 1 1 -1 1 1 —1 B,
E, 2 -1 0 2 —1 0 (R, R,) (22—, zy); (a2, ¥2)
4, 1 1 1, -1 —1 —1
Ay, 1 1 -1 —1 —1 1 z
. 2 —1 0 -2 1 0 (zv
P4 E 28, 2C, 28! C, 4C] 404
A, 1 1 1 1 1 1 1 z?ty?;
A, 1 1 1 1 1 -1 —1 R,
B, 1 -1 1 -1 1 1 -1
B, 1 -1 1 -1 1 —1 1 z
E, 2 2 0 —42 —2 0 0 (29
E, 2 o -2 0 2 0 0 (= —y3, zY)
B, 2 —/2 0 2 —2 0 0 (R,R) (=)
2w E 2C, 2C 5C; | 28, 25,  bas o= T72°
4,, 1 1 1 1 1 1 1 1 z24yt; 2
4,4, 1 1 1 —1 1 1 X —1 R,
E,, 2 2coanx 2 cos 20t 1] ] 2 concx 2 coa 2a ¢ (R.. R,} (z:, yx)‘
E,, 2 2oos2ax 2co8x 1] 2 2 ooe 20 20080 1] (2 —yt, zy)
| 1 1 1 =1 —1 —1 —1
I | 1 1 -1 —1 —1 —1 1 *
B, 2 2008 2 cos 2a ¢ —2 —2coea —2 coa 2a 1] {z, )
Eyu 2 20082 2cosax 0 —2 —2cos2x —Z2ooex (1]
P E 25, 2C, 25, 2C, 2Sh €, 8C: 66a
A, 1 1 1 1 1 1 1 1 1 20+ y%; et
A, 1 11 1 1 1 1 —1 —1 Y
By, 1 —1 I —1 1 -1 1 1 -1
By 1 ~1 1 -1 1 —1 ; —; 5 ¢ £ ,
0 —1 —4/3 — z, ¥
g: ; V: — : —2 -1 v 1 2 0 0 (z2—y3, 2y)
E, 2 o -2 0 2 o —2 0 0
E, 2 —1 —1 2 -1 —1 2 (1] [1]
E, 2 —+3 1 o —1 V3 —2 0 0 (R,R,) (xz,y2)
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VII: Qroups &, (n — 4, 8, 8)
& E § C, 5

A 1 1 1 1 R, 234-gy?; 22
B 1 -1 1 —1 z 25— y2; zy
E 1 i -1 i (R B
1 —i —1 il &9 (R, B,) (xz, y2)
y. E C, C; 1 Sz SG £ = exp(zﬂi/a)
4, 111 1 1 1 R, x+yt; 2
1 & £* 1 & £*
£, {1 &* ¢ 1 &* P } (&, Ry (#*—y3, xy); (22, y2)
4, 1 1 1 -1 —1 —1 z
1 e e* =1 —g o g*
E“ {1 e* —1 —* ._g } (I, y)

Y E S8 € 8§ ¢ 8 ¢ 5 & = exp(2wi/R)

A 1 1 1 1 1 1 1 1 R,  ztyyt 2

B 1 -1 I -1 1 -1 1 —1 z

£ ) S i —e* —1 — —i % (z,y);

1 1 &* —i —g -1 —g* i e | (B, R)

1 i -1 —i 10 -1 —i

£, [1 - =1 i 1 =i -1 i} (9", 2y}
1 —e* —i e -1 &* i —e

E, {1 — i e -1 & —i —s‘} (2, 32)

VIII: Group T ,, O and O,
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.7-& E 8C, 3C, 65, 6o,
A, 1 1 1 i 1 PR N
A, 1 1 1 -1 -1
E 2 -1 2 0 0 (223 —a?—y2, 22 —9?)
T, F, 3 0o —1 1 -1 (R,R,R,)
T,,Fy, 3 0 —1 -1 1 (=, v, 2) (zy, zz, yz)
0 E BC, 3C, 6C, 6C;
4, 1 1 1 1 1 2343 23
Ag 1 1 1 -1 -1
E 2 —1 2 0 0 (222 —a2—y?, 22— y3)
T. F, 3 .0 -1 1 -1 (R, R,R);
(z’ y, z)
T” FS 3 o —1 —1 1 (zyv xz, yz)
& E 8C, 3C, 6C, 8C; { B8S, 30n 8S, 60g
A, 1 1 1 1 1 1 1 1 1 1 2V yiat
A,, 1 1 1 —1 -1 1 1 1 —1 —1
ES 2 -1 2 o © 2 —1 2 o0 o (263 — 20—y, ¥ —yY)
7, ¥, 83 0 —1 1 —1 3 0 —1 1 —1 (B, R, R,
T". F" 3 o —1 -—1 1 3 o —1 -1 1 (zy, ==, yz)
4, 1 1 1 1 1 —1 =1 -1 —1 -1
A4, 1 1 1 =1 =1 =1 —1 =1 1 1
K, 2 —1 2 L1} o —2 1 -2 0 (4]
T F1u 3 0 —1 1 —1 -3 0 1 =1 1 (x, y, 2)
Tour Fay 3 o —1 —1i 1 —3 (1] 1 1 -1
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IX: Groups € oy and Py,

€or E 20(d) o,
A, =2+ 1 1 1 z z8y3; 23
Ay =%~ 1 1 —1 R,
E, = 2 2cosé 0 (z9): (B, R,)  (2z,92)
E,=A 2 2oc082¢ 0 (x2—y3, zy)
By =@ 2 2cos3¢ 0
F., E 3C(§) .. OOy 2S(¢) ... G,
= 1 11 1 e 1 a8yt ot
o | 1 -1 1 1 . =1 R,
a, 2 2coad¢ 0 2 —2cosgd 0 (R,. R, (zz, yz)
A, 2 Z2oom 24 0 2 2co824 ... O (x3—y3, xy)
£ 1 B U S R
pm 1 1 -1 —1 —1 1
II. 2 Zcos g ¢ —2 2 oo8 ¢ 0 {z, ¥)
A 2 —2 o8 24 1]
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Answers to Selected Problems

C|=O,C2=0.C3=1
1= IN2,c=iMN2,c5=0

¢ = IN2,c5= i N2,05=0

c; =4 -i¥ V306 , ¢y =-17/306
¢, =@-i)/Vi8,¢c, = t/V18

0 0 0“
1 0 0
0 1 0
0 1
0 0 1
0 0 0
1 0 0
0 1 0
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292 Answers to Selectad Problems
54 (a) All matrices are diagonal, the three diagonal elements are: D(CY) = 0 1 0 0 H
R=E 1,11 0 0 1 0|
R =Cy(z); -1,-1L,1 0 0 0 1
R =Cy(y) -1, 1,-1 1 0 0 0
R = Cy(x); 1,-1,-1
R=i -L-1, -t D(Cy) = 0 1 0
R = o(xy); 1,1,-1
R = o(xz); 1,-1,1 ¢ 0 1
R =o(yz); -1,1,1 1 0 0 0
0 1 0 0 !
Chapter 7 DGy - o o0 o 4 '
72 rI~-r*2erd oret 0 o 1 Y
0 -1 0
A2 -
72 =)+ + 5+ £4)/2
B - -1 0 0 0
=y - f+f-fH2
fE =@, - £/ V2
L 1-f3 - D(Cy) = 0 -1 0
fy =(f, - f )/ V2
2 =01 1 0 0 0
74 r™=3rM er2e:2ré ¢3rk: 0 -1
0 [¢] -1 ¢
7.6 (a) Ford,, py belongs to rh2
p; and p; to T'E D(C3) = -1 0 0 0 |‘
For Dy, p; belongs to T53u
P, belongs to rB2u 0 0 0 -1
Py belongs to [B1e -1
-1 0 0]
Chapter 8
P D(C}y) = 0 0 -1 0 [
g1 © Merm=rverterx 0 -1 0 o
1 er® . oo T e e e
Mmere-rererh
0 0 0 -1

8‘2 (b) o= Bll’ st or E]!
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Chapter 9
9.2 For 3,4, the five B, and eight E; modes are infra-red active; the six A}, nine E,
and eight E; modes are Raman active.
For 6, the three A, and two B, modes are infra-red active; the three A, one A,
and two B, modes are Raman active.
95 (2 IMP=3rer*2e4t
© TP=Tr*eor*:orte ort:orso2r'e e r'x eirk
Chapter 10
101 @ ¥i(a,) = 0.526(8, + 0/ V2 +0.851(¢; + b3}/ V2
Wala,) = 0.851(; + 44)/ V2 - 0.526(0, + &)/ V2
W,(by) = 0.851(0; - 0/ V2 + 0.526(0; - ¢/ V2
W4(by) = 0.526(0, - 0/ V2 - 0.851(8, - $;)/ V2
£ =a+ 1.6183
g =0-0.618p
ey =0+ 0.6188
g4=0-1.6188
) W@ = VB (¢ +dy +¢3 + g+ 95)

W, () = V25 (b +C ¢y + C0y + Coy +C105)
W4 (e) = V25 (C)0) + &3 +Cydy + Cpdg + Cobs)
W, (e7) = V25 (b + oy + 0103 + €104 + Cobs)

W (6 = VI5 (Coy + 4y + Cady +Cy0y + Cy5)
¢, = cos(2n/5) and ¢, = cos(4n/5)

g =a+2B

g, =a+0.6183

g =0 - 1.6188

Answers to Selected Probiems

Chapter 11

11.1

frsa? . a2y

fysy2. 3d) i
fuse? .32

fr2 - y2)

fya2 rm
Tua2 - y2)

f ™

Ayz

Chapter 12

12.1

a);:  mixtures of s, d,2and "Pgl (three non-degenerate MOs)
8

g W5,

by,:  mixturesof d,2_,2 and ‘{-‘gl (two non-degenerate MOs)
g

(one non-degenerate ligand MO)

by mixtures of d,, and ‘szs (two non-degenerate MOs)

ey mixtures of d,, and ‘*l"g! (1) (two non-degenerate MOs) and degenerate
with these two mixtures of d,; and ‘I‘l’s‘g 2

a5,  mixtures of p, and ‘F:zu (two non-degenerate MOs)

byt "l"f;‘zu (one non-degenerate ligand MQ)
e, mixtures of p,, ‘i’gn (1) and ‘PE“ (1) (three non-degenerate MQOs) and

degenerate with these three mixtures of py, ¥g (2yand ¥g (2).
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ab initio caloulations, 250, 252, 2065.

Abelian group, 31, 32.

aoocidental dege ¥, 154, 1565.

adjoint of a matrix, 56, 59.

algebra of symmetry operations, 15.

alternating axis of symmetry, 13.

associative law, 10, 17, 25.

atomic orbitals, olassification of, 221, 224,
246; trangformation properties, 221.

atomic units, 217,

axial veotors, 181, 248,

axis of symmetry, 2.

basis for a representation, 84, 85, 90;
d-orbital example, 92.

basis function generating machine, 126.

bagis functions, 103.

benzene, ground state configuration of,
212.

Bethe, 6, 243.

Biot, 20.

block structure, 96, 111, 175, 177, 211, 214.

Born- Oppenheimer approximation, 152.

C,, 16.

Cauochy, 5.

Cayley, b.

Celebrated Theorem, 143, 145.

centre of symmetry. 15.

character tables, 279; construction of,
128, 130.

characteristic equation, 56.

characters, 120; computer determination
of, 181; of & representation, 120;
orthogonality of, 122, 120.

charge-transfer bands, 271.

29(R), 179,

classes, 82, 57, 121; complets, 146.

classification of atomiec orbitals, 221, 224.

classgifioation of vibrational levels, 184,

cofactors, 50.

combination lovels, 180, 192,

commautation, 10, 16, 53, 58, 151, 197,

complete classes, 146.

complete sets, 221.

conjugate complex of s matrix, 59,

conjugation, 31.

core Hamiltonian, 204.

correlation diagrams, 260, 262.

eorrelation energy, 198.

Coulomb operator, 202.

Coulombio integrals, 308.

Coulson, 221.
erystal field splitting, 267.
orystal field theory, 243, 260.

decomposition rule, 124, 158, 160, 181, -

101, 208, 213, 226, 227, 282, 247, 253.

degeneracy, 88, 154; of hydrogenic wave-
funotions, 155.

delocalization energy, 212.

determinantal equation, 56, €8, 167, 202,
208, 207, 210, 215, 245, 250, 254.

determinants, 50, 87; as representationa,
97.

determination of x*(R), 179.

determination of irreducible represen-
tationa, 134.

diagonal matricea, 58.

diagonalization, 68, 139.

diotionary order, 1565.

dipole moments, 19.

direct product, cheracters, 157; of two
matrices, 156; reduction of, 168, 169;
representation of, 156, 218, 264.

distributive law, 10.

d-orbitala as a basis of representation, 92.

E, 16,

effective magnetic moment, 273.

eigenvaiuea, 88.

eigenvectors, theorems, 63.

electric dipole moment, 187.

electronio equation, 152.

enantiomers, 20,

equivalent atoms, 4.

equivalent representations, 108, 108, 115,
124.

exchange operator, 202,

Formi resonance, 192.

Figgis, 244.

free ion states, 262.
Frobenius, 6.

funection space, 72, 86.
fundamental frequencies, 172.
fundamental levels, 171.

Galois, 5.

T representation, 172; reduction of, 116.

generating machine for basis functions,
126.

gerade, 132,

Great Orthogonality Theorem, 118, 138;
proof, 141.



ground atate configuration, for benzene,
212; for trivinylmethyl radical, 216.

group, definition of, 24, 25; order, 31;
properties of, 31.

group table, 27; for ¥4y, 79; for aymmetrio
tripod, 29.

Hamiltonian operators, 88, 151, 153, 197;
oore, 204; commutation with Ogr, 200,
218; invarianoce of, 161,

harmonioc foree constants, 165.

harmonic oscillator, approximation, 165;
equation, 170.

Hartree—Fock, approximation, 198;
equations, 200; orbitals, 222,

Hartree-Fock—~Roothaan equations, 201,
204, 205.

Hermite polynomials, 171.

Hermitian matrices, 58, §9, 64, 65.

hole formalism, 268.

homomorphism, 30, 48, 97, 100,

Hiickel molecular orbital method, 206;
for benzene, 206; for trivinylmethyl
radieal, 212.

hybrid orbitals, 219, 221; for s-bonding
ayatems, 225; for w-bonding systems,
229; geometry of, 230; mathematical
form of, 234.

hybridization, 221.

i, 18.

identity element, 11, 25.

identity matrix, 58.

identity operation, 11, 77.

indistinguishability of identical particles,
199.

infinite point groups, 133.

infra-red activity, 178.

infra-red apectra, 186; of CH, and CH,D,
190.

inverse element, 285.

inverse of a matrix, 54, 55, 237.

inverse operation, 15, 17, 77,

inverses of operations, 148,

irreducible representations, 103, 111, 118;
determination of, 134; for ¥,,, 112;
notation, 131; number of, 130, 145, 147;
orthogonality rules, 130; totally sym-
metrio, 130.

irredueibility, oriterion for, 124.

isomorphic groups, 28.

isomorphiam, 29.

Jordan, 6.
Kronecker produoct, 156,

Laplacian operator, 152.
Laporte rule, 271.

LCAO MO approximation, 201; alternative
notation, 217 ; for octahedral compounds,
244; for sandwich compounds, 262; for
tetrahedral compounds, 251,

Lewia, 219.

Lie, 6.

ligand fleld theory, 244, 276.

ligands, 243.

linear equations, 53.

linear independence, 86, 1564.

linear operators, 9, 100, 164.

localized molecular orbital theory, 2189,
220; relationship with non-localized
moleoular orbitai theory, 241.

L—S coupling, 227.

magnetic moment, effective, 273.

magnetic properties of transition-metal
ocomplexes, 273.

mass-weighted displagement coordinates,
165.

matrices, 48; addition, 51; adjoint, 55, 59;
algebra of, §1; associative law, 50;
commutation, 68, 138, 140; conjugate
complex, 59; determination of inverse,
81; diagonal, 58; diagomalization, &8,
686, 87; direst product of, 158; distrib-
utive law, 8§5; division, §4; eigenvalue
equation, 58; eigenvalues, 55; eigen-
veotors, 55; equality, 51; Hermitian, 56,
59, 64, 65; identity, 68; inverse of, 54,
66, 237; multiplication, 52; non-singular,
64; order of, 50; orthogonsal, 61; real,
69; square, 49; square root of, 115;
subtraction, 81; symmetrio, 59; trace,
66; transpose of, 55, 69; unitary, 57, 65.

matrix representation, 72; for %, 78;
for %;y, 78, 108; from base vectors,
82; from position vectors, 73.

mirror image, 20.

molecular orbitals, 197, 198; degeneracy,
218; for bemzene, 208; for octahedral
compounds, 244; for sandwich ocom-
pounds, 262; for tetrahedral ocom-
pounds, 251; for trivinylmethyl radieal,
212; theory, 197.

molecular vibrations, 164.

Mozart, 3.

Mulliken’s notation, 131.

non-.crossing rule, 244,

normal coordinates, 164, 187; classification,
178, 182; for linear molecules, 184.

normal modes, 168, 175.

normalization, 56, 209.

nuclear equation, 152.

null matrix, 60.

Qffenhartz, 244.

operator algebra, 8.

operator, kinetic-energy, 152; potential-
energy, 152.

optical activity, 20.

orbital energies, 200, 202.

order of a group, 31.

orthogonal eigenvectors, 67, 60.

orthogonal matrices, 61.

orthogonal veetors, 119, 122, 148.

orthogonality theorem, 118, 138, 141.

orthonormal basis functions, 87.

aorthonormal funotions, 87.

overtone levels, 189, 192,

Paateur, 20,

Pauli exclusion principle, 199.

m-electron spproximation, 203.

w-electrons, 203.

plane of symmetry, 2, 13.

point groups, 24, 26; classification of, 35;
determination of, 38, 48; infinite, 138.

polarizability, 180, 195.

position veotors, 73,

priocipal axis, 11,

produoct law, 9.

projection operators, 126, 208, 213, 234.

quenching, orbital angular momentum,
274.

Raman sotivity, 178, 190,

Raman spectra, 189; of CH,, CH,D, 180.

roal matrioss, 59.

Rearrangement Theorsem, 29, 40, 116, 142,
145.

reducible representations, 103, 110, 111,
123, 208, 2248,

reduction of a representation, 123, 125,
208.

reflection operation, 13, 78.

regular representation, 143, 144, 148.

representation theory, 6.

ropresentations, baasis for, 84, 85, 90;
determinants as, 97; direst produoct,
155, 218, 264; I'?, 172.

resonance integral, 208,

rotational energy, 169,

rotational normal coordinates, 168, 178.

rotation cperation, 11, 74.

rotation—reflection operation, 13, 77.

Sa 18

scalar product, 86, 80, 113,

S8chmidt orthogonalization, 109, 113.
8choenflies notation, 35, 36,

Index 299

Sechradinger equation, 1651, 197, 222,

Schur’s lemmas, 138

seleotion rules, 151, 158, 188.

self oonsistent field method, 198.

ga, 16,

oy, 16.

av, 18.

¢-bonds, 225.

o-electronas, 203.

g-orbitals, 225.

o-n separability, 203.

similarity transformations, &7, 65, 108,
109, 115, 120, 121, 173.

Slater determinants, 199.

Slater orbitals, 222.

space groups, 26.

speotral properties of transition-metal
complexea, 271.

spectroscapio states, 2768.

spherical harmoniocs, 223.

spin, 201, 202; multiplicity, 264, selection
rules, 271.

spin-only formule, 274.

aquare matrix, 49.

aquare root of a matrix, 115.

sum law, 9.

Sylow, 6.

symbol list, xv.

symmetrio matrix, 59.

symmetry element, 7.

symmetry operations, 7, 10; algebra of,
15; for symmetric tripod, 27.

symmetry operator, 10.

symmetry orbitals, 203, 208, 207, 210,
212, 246.

term symbolas, 258, 278, 278.

totally symmetrio representation, 159.

trace of & matrix, 66, 120.

transformation operators, 88, 89, 105;
for the €,y point group, 92.

transformation properties of atomic
orbitals, 221.

transforms, 31.

transition-metal complexes, 243.

translational energy, 169.

translational normal coordinates, 168, 178.

transpose of & matrix, 55, 59.

trivinylmethyl radical, ground state con-

figuration for, 218.

ungerade, 132.

unit matrix, 58.

unitary matrices, 57, 80, 65, 67, 90,

unitary operators, 9, 90.

unitary representations, 103, 108, 1183,
115, 118,

unitery transformations, 57, 67.

unpasired spins, 274,



valenoe bend theory, 219, vibrational normal coordinates, 178.
vanishing integral rule, 158, 180, 211. vibrations, 164.
Van Vleck, 243.
vibrational energy, 169.
vibrational energy levels, 171; classifi- wavefunotions, 88.
ocation of, 184, Weyl, 6.
vibrational equation, 169, 170. Wigner, 4, 6.



